
Lab Workbook Functions, Procedures, and Testbenches

 www.xilinx.com/university Nexys3 4-1
 xup@xilinx.com
 © copyright 2013 Xilinx

Functions, Procedures, and Testbenches

Introduction

VHDL lets you define sub-programs using procedures and functions. They are used to improve the
readability and to exploit re-usability of VHDL code. Functions are equivalent to combinatorial logic and
cannot be used to replace code that contains event or delay control operators (as used in a sequential
logic). Procedures are more general than functions, and may contain timing controls. A testbench is a
program or model written in HDL for the purposes of exercising and verifying the functional correctness of
a hardware model via simulation. VHDL is primarily a means for hardware modeling (simulation), the
language contains various resources for formatting, reading, storing, allocating dynamically, comparing,
and writing simulation data, including input stimulus and output results.

In this lab, you will learn how to write functions, procedures, and testbenches. You will learn about the
components of a testbench, and language constructs available to verify the correctness of the underlying
hardware model. Please refer to the PlanAhead tutorial on how to use the PlanAhead tool for creating
projects and verifying digital circuits.

Objectives

After completing this lab, you will be able to:

 Develop procedures for modeling a combinatorial circuit

 Develop functions for modeling a combinatorial circuit

 Develop a testbench to test and validate a design under test

Procedures Part 1

A procedure provides the ability to execute common pieces of code from several different places in a
model. A procedure can contain timing controls, and it can call other procedures and functions (described
in next part). A procedure is defined, within a module definition, as:

procedure identifier [input/output port declarations] is

 [variable declarations]

begin

 procedure statements

end identifier

A procedure can have zero, one, or more arguments. Values are passed to and from a procedure
through arguments. The arguments can be input, output, or inout. Here is an example of a procedure
definition and usage.

procedure HAS_PROCEDURE (

 DIN : in STD_LOGIC_VECTOR(7 downto 0);

 DOUT : out STD_LOGIC_VECTOR(7 downto 0)) is

variable k : integer := 0;

variable count : integer := 0;

begin

 for k in 0 to 7 loop

 count <= count + 1;

 DOUT(8 – count) <= DIN(8);

 end loop;

end HAS_PROCEDURE;

Functions, Procedures, and Testbenches Lab Workbook

Nexys3 4-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

1-1. Write a procedure called add_two_values which will take two 4-bit
parameters, add them, and output a 4-bit sum and a carry. Write a module,
called add_two_values_procedure, that calls the procedure with the
operands received via input ports and outputs the result. Simulate the
design with the provided testbench, add_two_values_procedure_tb.vhd,
and verify the functionality.

1-1-1. Open PlanAhead and create a blank project called lab4_1_1.

1-1-2. Create and add the VHDL module, named add_two_values_procedure, that defines a procedure
called add_two_values. The procedure will take two 4-bit parameters, add them, and output a 4-
bit sum and a carry. The module will call the procedure with the operands received via input ports
and outputs the result.

1-1-3. Simulate the design with the provided testbench: add_two_values_procedure_tb.vhd, and verify
that the design works. Look for the messages displayed in the simulator console window.

1-2. Write a procedure called calc_even_parity which will take an 8-bit number,
and compute and return parity. Write a module, called
calc_even_parity_procedure, that calls the procedure with the operand
received via the input port and outputs the result. Use the provided
testbench, calc_even_parity_procedure_tb.vhd, that displays the result in
the simulator console window. Simulate the design and verify the
functionality.

Functions Part 2

Functions primarily differ from procedures in that a single value is returned from executing the code.
Functions are used if all of the following conditions are true:

 There are no delay, timing, or event control constructs that are present

 It returns a single value

 There is at least one input argument

 There are no output or inout arguments

 There are no non-blocking assignments

In short, functions may implement only combinatorial behavior, i.e. they compute a value on the basis of
the present value of the input arguments and return a single value. Each line of code in the function is
executed sequentially (they are not non-blocking). They are used in the right hand side of an assignment
statement. Here is an example of a function definition and call. An example of a function definition in
VHDL is as follows:

function identifier [input/output port declarations] return type is

 [variable declarations]

begin

 function statements

end identifier

To call a function, one needs to use the function identifier (with input(s) defined) as an assignment
operand in a process block:

Func_Out <= identifier (input, output);

Lab Workbook Functions, Procedures, and Testbenches

 www.xilinx.com/university Nexys3 4-3
 xup@xilinx.com
 © copyright 2013 Xilinx

Here is code snippet showing how functions are used:

function HAS_FUNCTION (

 DIN : STD_LOGIC_VECTOR(7 downto 0);)

return STD_LOGIC_VECTOR is

variable k : integer := 0;

variable count : integer := 0;

variable reverse_bits : STD_LOGIC_VECTOR(7 downto 0) := “00000000”;

begin

for k in 0 to 7 loop

 reverse_bits(7 – count) := DIN(count);

 count := count + 1;

 end loop;

return reverse_bits;

end HAS_TASK;

2-1. Write a function called add_two_values which will take two 4-bit
parameters, add them, and return a 5-bit sum. Write a module, called
add_two_values_function, with two 4-bit input ports and one 5-bit output
port and calls the function. Simulate the design with the provided
testbench, add_two_values_function_tb.vhd, and verify the functionality.

2-1-1. Open PlanAhead and create a blank project called lab4_2_1.

2-1-2. Create and add a VHDL module, called add_two_values_function, that defines a function called
add_two_values that takes two 4-bit parameters, add them, and return a 5-bit sum. The module
will have two 4-bit input ports and one 5-bit output port. It will call the function.

2-1-3. Simulate the design with the provided add_two_values_function_tb.vhd for 50 ns and verify that
the design works.

2-2. Write a function called calc_ones which will take an 8-bit number, and
calculate and return number of ones. Write a module, called
calc_ones_function, with one 8-bit input port and one 3-bit output port and
calls the function. Simulate the design with the provided testbench,
calc_ones_function_tb.vhd, and verify the functionality.

Testbench Part 3

The major components of a testbench are:
o Module, which defines the testbench top-level structure

 A testbench usually does not have input or output ports
o Internal signals, which will drive the stimuli into the UUT and monitor the response from the UUT

 Signal to drive and monitor
o UUT instantiation
o Stimuli generation

 Write statements to create stimulus and procedural block
o Response monitoring and comparing

 Self-testing statements that will report values, error, and warnings

Here is an example of the testbench we used in the PlanAhead Tutorial lab.

Functions, Procedures, and Testbenches Lab Workbook

Nexys3 4-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

Lab Workbook Functions, Procedures, and Testbenches

 www.xilinx.com/university Nexys3 4-5
 xup@xilinx.com
 © copyright 2013 Xilinx

Skipping the first few lines of the code, Line 14 shows the TEXTIO package being used. Lines 16 and 17
define the testbench module name. Line 19 starts the architectural description of the code. Lines 19 to 25
defines the port mapping of the UUT VHDL module. Lines 27 to 30 specify the signals and vectors used
in the testbench. Lines 32 to 47 define the procedure used to compute the expected UUT output. Lines 50
to 53 instantiates the UUT, mapping the input and output to signals defined earlier in the module. Line 55
begins the process where the behavioral code resides. Lines 56 to 59 defines local variables used in the
process only. Lines 62 to 81 is the for-loop that will run 128 times. Lines 65 and 67 show how waits can
be inserted to simulate delays. Lines 72 and 73 outputs to the simulation console window. The same
applies to lines 75 and 76.

VHDL supports two types of delay modeling: (i) inertial and (ii) transport. The inertial delay is the delay
that a gate or circuit may experience due to the physical nature of the gate or circuit. The inertial delay is
also used to determine if the input has an effect on the gate or circuit. If the input does not remain
changed at least for the initial delay then the input change is ignored. For example, an inertial delay of 5
ns means whenever input changes it should remain changed at least for 5 ns to have it considered as
changed otherwise the change is ignored (considered a transient spike). The transport delay is the time-
of-flight of a signal travelling a wire of a circuit.

In VHDL, inertial and transport delays are specified as part of assignment statements. Here are some
examples of transport and inertial delays:

bit_result <= input_bit xor bit_mask after 10ns;

This is an inertial delay. The after keyword in the assignment statement indicates that the output will

only change after 10 ns elapsed from changes in both of the input arguments. If one of the inputs reverts
to its original value during the 10 ns delay, then the initial change will not be registered.

bit_result <= transport input_bit xor bit_mask after 10ns;

The example above shows how transport delay is specified. Notice the only difference with the previous

example is the keyword transport. This delays the output by the time specified. In this case, the

transport delay only delays the output by the 10 ns specified.

It is sometimes important to output results to the simulator console window. This may be necessary when
comparing simulation outputs to determine if the code has passed or failed simulation. VHDL supports
writing to either a text file or to the simulator console window. This is done via the TEXTIO package that
can be added to a VHDL module via use std.textio.all. Packages allow for referencing functions and
components in a design. In the case of simulation testbenches, it is often essential to output values and
messages to the screen in addition to the waveform, depending on certain conditions to mark specific
events. The following example shows how to output one line to the simulator console:

process

variable s : line;

variable n : integer := 5;

begin

write (s, string’(“The quick brown fox jumps over the lazy dog. ”)); --

Writing a text string.

write (s, n); --Writing a variable value.

writeline (output, s); --Outputs the above to one line.

end process;

Where s is the line variable for writing both the string and the variable “n” to. The expected output of the
example above will be:

The quick brown fox jumps over the lazy dog. 5

The write command is not synthesizable and should be used in testbenches only.

Functions, Procedures, and Testbenches Lab Workbook

Nexys3 4-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

3-1. Develop a testbench to verify the 4-bit ripple carry adder functionality. Use
the ripple carry design (and its associated fulladder_dataflow module) you
developed in Part 3-1 of Lab 2. Modify the design to include 2 units of
inertial delay for every assignment statement in the design. Develop a
testbench such that it computes expected output, compares the result, and
displays the result as “Test Passed” or “Test Failed”

3-1-1. Open PlanAhead and create a blank project called lab4_3_1.

3-1-2. Add the VHDL module you used in part 3-1 of Lab 2. Modify the design to include 2 units of
inertial delay for every assignment statement in the design. Develop a testbench such that it
computes expected output, compares the result, and displays the result as “Test Passed” or “Test
Failed”.

3-1-3. Simulate the design for the desired time and verify that the design works. You should be able to
verify just by looking in the console window of the simulator.

3-2. Develop a testbench that generates the waveform shown below.

3-2-1. Open PlanAhead and create a blank project called lab4_3_2.

3-2-2. Create and add the VHDL module that outputs the waveform shown above.

3-2-3. Simulate the design for 150 ns and verify that the correct output is generated.

Conclusion

In this lab, you learned how to write functions, procedures, and testbenches. You also learned the
differences between functions and procedures, both in their definitions and in usage. You saw how
function can be used in a testbench to compute the expected output.

