
Lab Workbook Numbering Systems

 www.xilinx.com/university Nexys3 2-1
 xup@xilinx.com
 © copyright 2013 Xilinx

Numbering Systems

Introduction

The VHDL modeling language allows numbers being represented in several radix systems. The
underlying circuit processes the number in binary, however, input into and output from such circuits is
typically done using decimal numbers. In this lab you will learn various representations and methods for
converting numbers from one representation into another. Please refer to the PlanAhead tutorial on how
to use the PlanAhead tool for creating projects and verifying digital circuits.

Objectives

After completing this lab, you will be able to:

 Define a number in various radix

 Design combinatorial circuits capable of converting data represented in one radix into another

 Design combinatorial circuits to perform simple addition operation

 Learn a technique to improver addition speed

Number Representations Part 1

In VHDL a signal can have the following four basic values:

i. 0 : logic-0 or false
ii. 1 : logic-1 or true
iii. x : unknown
iv: z : high-impedance

VHDL is case insensitive. A z value at the input of a gate or in expression is usually interpreted as a don’t
care or “x”. There are three types of constants in VHDL: (i) integer, (ii) real, and (iii) string. Integer
numbers can be written in (i) simple decimal or (ii) base format. An integer in simple decimal form is
specified as a sequence of digits with an optional + or a -. For example,

15

-32

Where 15 can be represented in binary as 01111 in 5-bit format and -32 can be represented in binary as

100000 in 6-bit format. The simple format representation may result in 32-bit hardware.
A number can be represented in the base format with syntax:

<base> <value >

 Where base is one of o or O (for octal), b or B (for binary), x or X (for hexadecimal), and value is a
sequence of digits which are valid for the specified base. Binary values can be declared in double
quotations without needing to specify a base. The value must be unsigned. For example,

o”37” 5-bit octal representation

”1111” 4-bit binary

x”AA” 8-bit hexadecimal representation

If the size of the value specified is larger than the vector being assigned to, then additional zeros will need
to be concatenated to extend the bit count. For example:

Numbering Systems Lab Workbook

Nexys3 2-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

signal counter : std_logic_vector (7 downto 0); --An eight bit

vector is

declared.

…

counter <= “0000” & x”A”; --Hexadecimal “A” is “1010”, counter is

eight bits, so four bits of zeros are

concatenated.

This is different from Verilog where zeros are automatically padded if there is a size mismatch while
making a value assignment to a multi-bit signal.

1-1. Define a 4-bit number in the model and display it on the right most 7-
segment display.

1-1-1. Open PlanAhead and create a blank project called lab2_1_1.

1-1-2. Create and add the VHDL module that defines a 4-bit number in binary format and displays the
same on the right most 7-segment display. You may use the model developed in 4-2 of Lab 1
assuming that the number you define will be between 0 and 9.

1-1-3. Create and add the UCF file to the project.

1-1-4. Synthesize and implement the design.

1-1-5. Generate bitstream, download it in to the Nexys3 board, and verify the functionality.

Binary Codes Part 2

Although most processors compute data in binary form, the input-output is generally done in some coded
form. Normally, we exchange information in decimal. Hence decimal numbers must be coded in terms of
binary representations. In the simplest form of binary code, each decimal digit is replaced by its binary
equivalent. This representation is called Binary Coded Decimal (BCD) or 8-4-2-1 (to indicate weight of
each bit position). Because there are only ten decimal digits, 1010 through 1111 are not valid BCD.
Table below shows some of the widely used binary codes for decimal digits. These codes are designed
and used for communication reliability and error detection.

Decimal Digits BCD (8-4-2-1) 6-3-1-1 Excess-3 2-out-of-5 Gray code

0 0000 0000 0011 00011 0000

1 0001 0001 0100 00101 0001

2 0010 0011 0101 00110 0011

3 0011 0100 0110 01001 0010

4 0100 0101 0111 01010 0110

5 0101 0111 1000 01100 1110

6 0110 1000 1001 10001 1010

Lab Workbook Numbering Systems

 www.xilinx.com/university Nexys3 2-3
 xup@xilinx.com
 © copyright 2013 Xilinx

7 0111 1001 1010 10010 1011

8 1000 1011 1011 10100 1001

9 1001 1100 1100 11000 1000

2-1. Output 4-bit binary input onto one LED (most significant bit) and the right
most 7-segment display (least significant digit) after converting them into
two-digit decimal equivalent (BCD). Use only dataflow modeling.

Design a circuit that converts a 4-bit binary number v into its 2-digit decimal equivalent, z and m.
Since valid input range is between 0 and 15, the most significant digit can be displayed using one
LED. Table below shows the required output values. A block diagram of the design is given in
figure below. It includes a comparator that checks when the value of v is greater than 9, and uses
the output of this comparator in the control of the 7-segment displays. Hint: The m3 would be zero
whenever V is greater than binary 1001.

v[3:0] z m[3:0]

0000 0 0000

0001 0 0001

0010 0 0010

0011 0 0011

0100 0 0100

0101 0 0101

0110 0 0110

0111 0 0111

1000 0 1000

1001 0 1001

1010 1 0000

1011 1 0001

1100 1 0010

1101 1 0011

1110 1 0100

1111 1 0101

Numbering Systems Lab Workbook

Nexys3 2-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

2-1-1. Open PlanAhead and create a blank project called lab2_2_1.

2-1-2. Create and add the VHDL module (name it as lab2_2_1_partA) with v[3:0] input, and z and m[3:0]
output, instantiating comparator_dataflow, lab2_circuitA_dataflow, and mux_2to1 and connecting
them as necessary.

2-1-3. Model comparator_dataflow and lab2_circuitA_dataflow functionality using the dataflow
constructs.

2-1-4. Add the provided testbench (lab2_2_1_partA_tb.vhd) to the project.

2-1-5. Simulate the design for 200 ns and verify the design works.

2-1-6. Extend the design by creating the top-level module (lab2_2_1) to have bcdto7segment_dataflow
decoder (that you developed in Lab 1) and provide one 7-bit output seg0 instead of m.

2-1-7. Create and add a UCF file to the project. Assign v input to SW3-SW0, z to LED0, and seg0 to
SEG0 (the right most 7-segment display).

2-1-8. Synthesize the design.

Lab Workbook Numbering Systems

 www.xilinx.com/university Nexys3 2-5
 xup@xilinx.com
 © copyright 2013 Xilinx

2-1-9. Implement the design.

2-1-10. Generate bitstream, download it to the Nexys3 board, and verify the functionality. Please note
that the most significant decimal digit is indicated by LED0 on the board.

2-2. Model a 2-out-of-5 binary code and display a 4-bit binary coded decimal
input number onto five LEDs. Use dataflow modeling.

2-2-1. Open PlanAhead and create a blank project called lab2_2_2.

2-2-2. Create and add a hierarchical design with 4-bit input (x[3:0]) and 5-bit output(y[4:0]). Use dataflow
modeling statements only.

2-2-3. Create and add the UCF file to the project. Assign SW3 -SW0 to x and LED4 to LED0 to y.

2-2-4. Synthesize and implement the design.

2-2-5. Generate bitstream, download it in to the Nexys3 board, and verify the functionality.

Performing Addition Part 3

When two one-bit numbers are added, they may produce two bits output. For example, 1 + 1 = 10 (all in
binary). When you add three one- bit numbers the result will still be two bits, e.g. 1 + 1 + 1 = 11. This
simple operation can be viewed as adding two bits with carry in from the lower significant operation,
resulting into sum and carry out- the left bit is carry out and the right bit is sum. Figure below shows a 4-
bit adder. Since the carry is rippled from least significant bit position (cin) to the most significant position
(cout), such adder is called ripple carry adder.

3-1. Create a 4-bit ripple carry adder using dataflow modeling.

3-1-1. Open PlanAhead and create a blank project called lab2_3_1.

3-1-2. Create and add the VHDL module named fulladder_dataflow with three inputs (a, b, cin) and two
outputs (s and cout) using dataflow modeling. All inputs and outputs should be one-bit wide.

3-1-3. Add the provided testbench (fulladder_dataflow_tb.vhd) to the project.

Numbering Systems Lab Workbook

Nexys3 2-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

3-1-4. Simulate the design for 80 ns and verify that the design works

3-1-5. Create and add the VHDL module to the project with three inputs (a, b, cin) and two outputs (cout
and s) instantiating full adder (FA) four times and connecting them as necessary. The a, b, and s
should be a 4-bit vector and cin and cout should each be one-bit wide.

3-1-6. Create and add the UCF file, assigning a to SW7-SW4, b to SW3-SW0, s to LED3-LED0, cin to
BTNU, and cout to LED7.

3-1-7. Synthesize and implement the design.

3-1-8. Generate bitstream, download it in to the Nexys3 board, and verify the functionality.

3-2. Modify the design of 3-1 by treating the 4-bit input as BCD, performing
addition, generating result in BCD, and displaying it on LED0 and right
most 7-segment display. Use switches to input two 4-bit BCD input and
BTNU for carry-in. Reuse models developed in 2-1 and 3-1 as needed. Use
dataflow modeling.

3-2-1. Open PlanAhead and create a blank project called lab2_3_2.

3-2-2. Modify the project of 3-1 as necessary to perform the required function and outputting the result
on LED0 and the right most 7-segment display.

3-2-3. Modify the UCF file.

3-2-4. Synthesize and implement the design.

3-2-5. Generate bitstream, download it in to the Nexys3 board, and verify the functionality.

Improving Addition Speed Part 4

The ripple-carry adders take a longer time to compute when two large numbers (e.g. 8, 16, 32 bits) are
added. To reduce the computation time, another structure, called carry-lookahead adders (see figure
below), can be used. It works by creating two signals (P and G) for each bit position, based on whether a
carry is propagated through a less significant bit position (at least one input is a '1'), generated in that bit
position (both inputs are '1'), or killed in that bit position (both inputs are '0'). After P and G are generated
the carries for every bit position are created.

Lab Workbook Numbering Systems

 www.xilinx.com/university Nexys3 2-7
 xup@xilinx.com
 © copyright 2013 Xilinx

Where Pi = Ai + Bi and Gi = AiBi. Within Carry Look Ahead unit, Ci+1 = Gi + PiCi. The speed-up is
achieved through the fact that Ci being generated at the same time irrespective of i

th
 position.

4-1. Create a carry-look ahead adder circuit by modifying the project of 3-1 and
using dataflow modeling.

4-1-1. Open PlanAhead and open the project you had created in 3-1.

4-1-2. Modify the project of 3-1 as necessary to perform the addition of two four-bit numbers using the
carry look-ahead structure and outputting the result LEDs. Provide carry-in through BTNU. Hint:
You will need to modify FA to output Pi and Gi, and then create and add another module CLA to
perform the carry look ahead function (takes c0 and pigi (i=0 to 3) and outputs c4 and pg and gg.

4-1-3. Modify the UCF file to provide input b through SW3-SW0, a through SW7-SW4, cin through
BTNU. Output cout through LED7 and sum through LED3-LED0.

4-1-4. Synthesize and implement the design.

4-1-5. Generate bitstream, download it in to the Nexys3 board, and verify the functionality.

Conclusion

In this lab, you learned how to define numbers in various radix systems. You also designed various
number conversion circuits using dataflow modeling. You also learned a technique of improving addition
speed.

