
Lab Workbook Counters, Timers and Real-Time Clock

 www.xilinx.com/university Nexys3 9-1
 xup@xilinx.com
 © copyright 2013 Xilinx

Counters, Timers and Real-Time Clock

Introduction

In the previous lab, you learned how the Architectural Wizard can be used to generate a desired clock
frequency and how the CORE Generator system can be used to generate various cores including
counters. These two functional circuits are fundamental circuits used in creating timers and real-time
clocks. In this lab, you will generate several kinds of counters, timers, and a real-time clock. Please refer
to the PlanAhead tutorial on how to use the PlanAhead tool for creating projects and verifying digital
circuits.

Objectives

After completing this lab, you will be able to:

 Define a parameterized model

 Model counters using behavioral modeling

 Design counters using the CORE Generator tool

 Compare and contrast the counters developed using the behavioral modeling and the CORE Generator

 Design timer circuits using the cores and using additional circuits modeled in HDL

 Create a real-time clock

Generic Declarations Part 1

The VHDL language supports model parameterization, i.e. write a model in HDL and reuse the same
model number of times by passing different constant values (typically bus widths and delays). The

generic construct can be used to define a parameterize-able model. Here is an example of defining a

width as a parameter with a default value of 7.

generic (WIDTH : integer := 7);

The parameter (WIDTH) must be defined before it can be used in the code. In the example above, it is

declared as a generic parameter that can be passed between modules. Here is an example, in VHDL,

where the constant is declared in an entity statement and is used in a process.

entity generic_example is

 generic (WIDTH : integer := 7);

...

architecture behavior of generic_example is

begin

 for I in WIDTH loop

 byte_data(I) <= ‘1’;

 data_dest(WIDTH - I) <= data_source(I);

 end loop;

end process;

Note that the parameter WIDTH is defined before it is used. In the example above, assuming I was

initialized to 0, the for loop will create eight parallel bits all set to 1 in the byte_data register. Similarly, a

byte swapped bus will be created between data_dest and data_source.

Generic statements can also be used to define time delays. In VHDL, the delay needs to be declared as a
time type with the units defined (for example: ns). The parameter can then be used in place of the
numerical value of the delay where specified. In the example below data_output is assigned the value of
‘1’ after a 5 ns delay.

Counters, Timers and Real-Time Clock Lab Workbook

Nexys3 9-2 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

entity generic_delay_example is

 generic (delay_a : time := 2 ns);

...

architecture behavior of generic_delay_example is

begin

 data_output <= ‘1’ after delay_a;

end process;

Parameters declared as generics can also be passed from a top level module to an instantiated module,
overwriting the parameters declared value in the lower level module. This allows instantiated code to be
re-used without needing re-writes. We start with the lower level module:

entity instance_A is

 generic (example_A : time := 5 ns);

port (

 in_A : in std_logic;

 out_A : out std_logic

);

architecture behavior of instance_A is

begin

...

 out_A <= in_A + ‘1’ after instance_A;

end process;

Now we can overwrite the generic in instance_A by passing a parameter value from a higher level module
that instantiates it.

entity top_level is

...

architecture behavior of top_level is

component instance_A is

 generic (example_A : time);

 port (

 in_A : in std_logic;

 out_A : out std_logic;

);

end component;

...

begin

 A1 : instance_A

 generic map (example_A => 20 ns)

 port map (

 in_A => in_A,

 out_A => out_A

);

...

end process;

Notice that we are setting the example_A parameter value to be 20 ns in the code above. 20 ns will
override the 5 ns value in the instance_A module. This way, a parameter from a higher level module can
propagate to a lower level module via passing without needing to change the instantiated code.

Lab Workbook Counters, Timers and Real-Time Clock

 www.xilinx.com/university Nexys3 9-3
 xup@xilinx.com
 © copyright 2013 Xilinx

1-1. Design a carry-look-ahead adder similar to that you designed in Part 4-1 of
Lab 2 but using gate-level modeling. Define 2 units delay for each kind of
gate that you use in the full-adder circuit using the generic statements.
When creating hierarchical models, use 1 ns delay for inverters, 3 ns delay
for and and or gates, and 4 ns delay for xor gates. Develop a testbench to
verify the functionality and to see the delays propagated through the
hierarchy. Output to the simulator console the expected versus actual
values for both the sum and the cout. Do not implement the design in
hardware.

Counters and Used Resources Part 2

Counters are fundamental circuits used in measuring events. They may be classified as simple free-
running binary up counting, up/down counting, modulo-k counting, Johnson counting, gray-code counting,
and special sequence counting. In a given design or set of designs, designer use counters of different
widths a number of times. The generic statement covered in Part 1 are used to obtain different widths.

Counters normally use adder and subtractor circuits which can be implemented in the Xilinx FPGA either
using LUTs and FFs, or DSP48 slices. You can control the type of resources to be used by setting an
appropriate synthesis property. In PlanAhead, select Project Settings > Synthesis > PlanAhead
Defaults (XST 14) Strategy > -use_dsp48 and either select no to force the use of LUTs and FFs, yes to
force the use of the DSP48 slices, or automax to let the tools decide depending on the width and type of
the operations.

Counters, Timers and Real-Time Clock Lab Workbook

Nexys3 9-4 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

2-1. Design an 8-Bit up/down counter using behavioral modeling. Your model
should define COUNT_SIZE as a generic and use it in the model. The
counter will use the on-board 100 MHz clock source. Use the clocking
wizard to generate a 5 MHz clock, dividing it further by a clock divider to
generate a periodic one second signal. Set the synthesis property to not to
use the DSP48 slices. Use the BTNU button as reset to the circuit, SW0 as
enable, SW1 as the Up/Dn (1=Up, 0=Dn), and LED7 to LED0 to output the
counter output. Go through the design flow, generate the bitstream, and
download it into the Nexys3 board. Verify the functionality. Fill out the
following information after reviewing the Project Summary tab.

1. Number of BUFG/BUFGCTRL _____________

Number of slices used: _____________

Number of registers used: _____________

Number of DSP48A1 slices used: _____________

Number of IOs used: _____________

2-2. Use the 8-Bit up/down counter design from 2-1. Set the synthesis property
to force the use of the DSP48 slices. Use the BTNU button as reset to the
circuit, SW0 as enable, SW1 as the Up/Dn (1=Up, 0=Dn), and LED7 to LED0
to output the counter output. Go through the design flow, generate the
bitstream, and download it into the Nexys3 board. Verify the functionality.
Fill out the following information after reviewing the Project Summary tab.

2. Number of BUFG/BUFGCTRL _____________

Number of slices used: _____________

Number of registers used: _____________

Number of DSP48A1 slices used: _____________

Number of IOs used: _____________

2-3. Design an 8-Bit up/down counter using the 8-Bit core generated using the
CORE Generator system. When generating the core, set the setting to use
the fabric resource. Use the clocking wizard to generate a 5 MHz clock
from the on-board 100 MHz clock source, dividing it further by a clock
divider to generate a periodic one second signal. Set the synthesis
property to not to use the DSP48 slices. Use the BTNU button as reset to
the circuit, SW0 as enable, SW1 as the Up/Dn (1=Up, 0=Dn), and LED7 to
LED0 to output the counter output. Go through the design flow, generate
the bitstream, and download it into the Nexys3 board. Verify the
functionality. Fill out the following information after reviewing the Project
Summary tab.

3. Number of BUFG/BUFGCTRL _____________

Number of slices used: _____________

Number of registers used: _____________

Number of DSP48A1 slices used: _____________

Number of IOs used: _____________

Lab Workbook Counters, Timers and Real-Time Clock

 www.xilinx.com/university Nexys3 9-5
 xup@xilinx.com
 © copyright 2013 Xilinx

2-4. Use the 8-Bit up/down counter design from 2-3 but with the counter
regenerated to use the DSP48 slices. Set the synthesis property to force
the use of the DSP48 slices. Use the BTNU button as reset to the circuit,
SW0 as enable, SW1 as the Up/Dn (1=Up, 0=Dn), and LED7 to LED0 to
output the counter output. Go through the design flow, generate the
bitstream, and download it into the Nexys3 board. Verify the functionality.
Fill out the following information after reviewing the Project Summary tab.

4. Number of BUFG/BUFGCTRL _____________

Number of slices used: _____________

Number of registers used: _____________

Number of DSP48A1 slices used: _____________

Number of IOs used: _____________

Timers and Real-Time Clock Part 3

Timers and real-time clock are natural applications of counters. The timers include a stop-watch timer and
a lapse timer The real-time clocks are used in a day to day life for keeping track of the time of the day.

3-1. Design a stop-watch timer using the CORE Generator system to generate
an appropriate sized (precision) counter core with the desired input control
signals to measure a time up to five minutes at a resolution of one-tenth of
a second. Instantiate the core a number of required times and add the
required additional circuitry to display the time in M.SS.f format on the four
7-segment displays. The design input will be a 100 MHz clock source, a
reset signal using the BTNU button, and an enable signal using SW0.
When the enable signal is asserted (ON) the clock counts, when it is de-
asserted (OFF) the clock pauses. At any time if BTNU is pressed the clock
resets to the 0.00.0 value. Verify the design functionality in hardware using
the Nexys3 board.

3-2. Design a countdown timer using the behavioral modeling to model a
parameterized counter down counter with the desired input control signals
to show the count down time from a desired initial value set by the two
slide switches of the board at a second resolution. Display the time in
MM.SS format on the three 7-segment displays. The design input will be a
100 MHz clock source, a re-load signal using the BTNU button, an enable
signal using SW0, and SW7-SW6 as the starting value in number of whole
minutes. When the enable signal is asserted (ON) the clock counts, when it
is de-asserted (OFF) the clock pauses. When the BTNU is pressed the
timer loads to MM.00, where the value of MM is determined by the SW7-
SW6 settings (MM=00 will be ignored). Verify the design functionality in
hardware using the Nexys3 board.

3-3. Design a real-time clock using the CORE Generator system to generate an
appropriate sized (precision) counter core with the desired input control
signals. Instantiate it two times and add the required circuit to display the
time in MM.SS format on the four 7-segment displays. The design input will
be a 100 MHz clock source and a reset signal using the BTNU button. At

Counters, Timers and Real-Time Clock Lab Workbook

Nexys3 9-6 www.xilinx.com/university
 xup@xilinx.com
 © copyright 2013 Xilinx

any time if BTNU is pressed the clock resets to 00.00. Verify the design
functionality in hardware using the Nexys3 board.

Conclusion

In this lab, you learned how to parameterize models using generic statements so they can be used in
subsequent designs. You also designed and compared the resources usage of counters modeled
behaviorally and using the CORE Generator tool. You also designed clocking applications using the
counters.

Answers

1. Number of BUFG/BUFGCTRL ______2_______

Number of slices used: ______12______

Number of registers used: ______32______

Number of DSP48A1 slices used: ______0_______

Number of IOs used: ______12______

2. Number of BUFG/BUFGCTRL ______2_______

Number of slices used: ______4_______

Number of registers used: ______1_______

Number of DSP48A1 slices used: ______2_______

Number of IOs used: ______12______

3. Number of BUFG/BUFGCTRL ______2_______

Number of slices used: ______12______

Number of registers used: ______32______

Number of DSP48A1 slices used: ______0_______

Number of IOs used: ______12______

4. Number of BUFG/BUFGCTRL ______2_______

Number of slices used: ______6_______

Number of registers used: ______9_______

Number of DSP48A1 slices used: ______1_______

Number of IOs used: ______12______

