JESD204C v3.0

LogiCORE IP Product Guide

Vivado Design Suite

PG242 April 4, 2018

Table of Contents

IP Facts

Chapter 1: Overview

Unsupported Features	. 5
Licensing and Ordering	. 5

Chapter 2: Product Specification

Standards	. 8
Performance	. 8
Resource Utilization	. 8
Port Descriptions	. 9
Register Space	14

Chapter 3: Designing with the Core

General Design Guidelines	29
Clocking	32
Resets	38
Data and Command Interfaces	39
SYSREF	41
Subclass 2 Operation (8B10B linecoding only)	45

Chapter 4: Design Flow Steps

Customizing and Generating the Core	46
Configuring the JESD204 PHY in IPI	50
Constraining the Core	51
Simulation	53
Synthesis and Implementation	53

Chapter 5: Example Design

Chapter 6: Test Bench

Appendix A: Verification, Compliance, and Interoperability

Appendix B: Upgrading

Appendix C: Debugging

Finding Help on Xilinx.com	59
Debug Tools	60
Simulation Debug	61
Hardware Debug	62
Interface Debug	62

Appendix D: Additional Resources and Legal Notices

Xilinx Resources	64
Documentation Navigator and Design Hubs	64
References	65
Revision History	65
Please Read: Important Legal Notices	66

IP Facts

Introduction

The Xilinx® LogiCORE[™] IP JESD204C core implements a JESD204C [Ref 9] compatible interface supporting line rates from 1 Gb/s to 32 Gb/s. The JESD204C core can be configured to transmit or receive using either a 64B66B or 8B10B link layer.⁽¹⁾

Features

- Designed to JEDEC[®] JESD204C Standard
- Supports up to eight lanes per core and greater number of lanes using multiple cores
- Supports 64B66B and 8B10B link layers
- Supports FEC Encoding (TX) and Decoding (RX) on the 64B66B link layer
- Supports CRC-12, CMD and FEC meta data modes on the 64B66B link layer
- Supports subclass 0 and 1 on the 64B66B link layer and Subclass 0,1 and 2 on the 8B10B link layer
- Provides physical and data link layer functions when used in conjunction with the JESD204_PHY core
- AXI4-Lite configuration interface
- AXI4-Stream Data and Command interfaces
- Supports Transceiver sharing between TX and RX cores using the JESD204_PHY core

LogiCORE IP Facts Table			
Core Specifics			
Supported Device Family ⁽¹⁾	UltraScale+™, UltraScale™		
Supported User Interfaces	AXI4-Lite, AXI4-Stream		
Resources	Performance and Resource Utilization web page		
	Provided with Core		
Design Files	Encrypted RTL		
Example Design	Verilog		
Test Bench	Verilog		
Constraints File	XDC		
Simulation Model	Verilog		
Supported S/W Driver	N/A		
Tested Design Flows ⁽²⁾			
Design Entry	Vivado® Design Suite		

Design Entry	vivado © Design Suite		
Simulation	For supported simulators, see the Xilinx Design Tools: Release Notes Guide.		
Synthesis Vivado Synthesis			
Support			
Provided by Xilinx at the Xilinx Support web page			

Notes:

- 1. For a complete listing of supported devices, see the Vivado IP catalog.
- 2. For the supported versions of the tools, see the Xilinx Design Tools: Release Notes Guide.

1. The maximum line rate supported is dependent on the transceiver type and speed grade of the selected device.

Chapter 1

Overview

The LogiCORE[™] IP JESD204C core implements a JESD204C link layer. When used in conjunction with the LogiCORE[™] IP JESD204_PHY core (to provide the physical layer), a JESD204C system can be created supporting line rates between 1 and 32 Gb/s on 1 to 8 lanes using GTYE4 and GTYE3 (UltraScale+ and UltraScale) transceivers. See the device data sheets for maximum line rates supported by each device and family. The JESD204C core can be configured as transmit or receive, using either 64B66B or 8B10B linecoding, and multiple cores can be used to realize links requiring more than eight lanes.

The JESD204C core is delivered by using the Xilinx[®] Vivado[®] Design Suite. In addition, an example design is provided in Verilog.

Unsupported Features

Sample data mapping/demapping is not provided by the core, because of the requirement that it be customized for different converter devices. For more information see applicable converter datasheets. A simple example mapper and demapper is provided for reference in the example design that can be generated for the core.

Licensing and Ordering

License Checkers

If the IP requires a license key, the key must be verified. The Vivado design tools have several license checkpoints for gating licensed IP through the flow. If the license check succeeds, the IP can continue generation. Otherwise, generation halts with error. License checkpoints are enforced by the following tools:

- Vivado synthesis
- Vivado implementation
- write_bitstream (Tcl command)

IMPORTANT: IP license level is ignored at checkpoints. The test confirms a valid license exists. It does not check IP license level.

License Type

This Xilinx LogiCORE IP module is provided under the terms of the Xilinx Core License Agreement. The module is shipped as part of the Vivado Design Suite. For full access to all core functionalities in simulation and in hardware, you must purchase a license for the core. Contact your local Xilinx sales representative for information about pricing and availability.

For more information, visit the JESD204 product web page.

Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information on pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.

A free evaluation version of the core is provided with the Xilinx Vivado Design Suite which lets you assess the core functionality and demonstrates the various interfaces of the core in simulation. To access the evaluation version visit the JESD204 IP Evaluation page.

License Options

The JESD204C IP core license is provided as part of the JESD204 core License (no separate license is required). The JESD204 core license provides three options. After installing the Vivado Design Suite and the required IP Service Packs, choose a licensing option.

Simulation Only

The Simulation Only Evaluation license key is provided with the Xilinx Vivado Design Suite. This key lets you assess core functionality with either the example design provided with the JESD204C core, or alongside your own design and demonstrates the various interfaces to the core in simulation. (Functional simulation is supported by a dynamically generated HDL structural model.)

Full System Hardware Evaluation

The Full System Hardware Evaluation license is available at no cost and lets you fully integrate the core into an FPGA design, place-and-route the design, evaluate timing, and perform functional simulation of the JESD204C core using the example design and demonstration test bench provided with the core.

In addition, the license key lets you generate a bitstream from the placed and routed design, which can then be downloaded to a supported device and tested in hardware. The core can be tested in the target device for a limited time before timing out (ceasing to function), at which time it can be reactivated by reconfiguring the device.

Full

The Full license key is available when you purchase the core and provides full access to all core functionality both in simulation and in hardware, including:

- Gate-level functional simulation support
- Back annotated gate-level simulation support
- Functional simulation support
- Full-implementation support including place and route and bitstream generation
- Full functionality in the programmed device with no time-outs

Obtaining Your License Key

This section contains information about obtaining a simulation, full system hardware, and full license keys.

Simulation License

No action is required to obtain the Simulation Only Evaluation license key; it is provided by default with the Xilinx Vivado Design Suite.

Full System Hardware Evaluation License

To obtain a Full System Hardware Evaluation license, perform these steps:

- 1. Navigate to the JESD204 product page for this core.
- 2. Click Evaluate.
- 3. Follow the instructions on the page.

Obtaining a Full License

To obtain a Full license key, you must purchase a license for the core. After doing so, click the **Access Core** link on the xilinx.com IP core product page for further instructions.

Installing Your License File

The Simulation only Evaluation license key is provided with the Vivado Design Suite and does not require installation of an additional license file. For the Full System Hardware Evaluation license and the Full license, an email will be sent to you containing instructions for installing your license file. Additional details about IP license key installation can be found in the Vivado Design Suite Installation, Licensing and Release Notes document.

www.xilinx.com

Chapter 2

Product Specification

The JESD204C core is used in conjunction with the JESD204_PHY core to support the JESD204C physical layer link layer specification.

Standards

JEDEC® Serial interface for Data Converters JESD204C [Ref 9].

Performance

For details about performance, visit the Performance and Resource Utilization web page.

Resource Utilization

For details about resource utilization, visit the Performance and Resource Utilization web page.

Port Descriptions

The port descriptions for the JESD204C core are described in the following sections.

TX Core

Table 2-1: TX	Core: Port	t Descriptions
---------------	------------	----------------

Signal Name	Interface	Direction	Description	
System Signals				
tx_core_clk	System s_axis_tx s_axis_tx_cmd	I	Core logic clock input. Frequency: Serial line rate / 66 (for 64B66B linecoding) or Serial line rate / 40 (for 8B10B linecoding)	
tx_core_reset	System	I	Core asynchronous logic reset active high.	
tx_aresetn	s_axis_tx s_axis_tx_cmd	0	AXI4-Stream interface reset. Active low. Associated with both data and command interfaces.	
tx_reset_gt	System	0	JESD204_PHY TX datapath reset. Core output to reset the transmit datapath in a connected JESD204_PHY. This must be connected to a JESD204_PHY.	
tx_reset_done	System	I	JESD204_PHY TX reset done input. Indicates the JESD204_PHY has completed the transmit reset process.	
s_axi_aclk	s_axi	I	AXI4-Lite clock input.	
s_axi_aresetn	s_axi	I	AXI4-Lite reset input. Active low.	
s_axi*	s_axi	I	See Appendix A of the Vivado AXI Reference Guide (UG1037) [Ref 10] for a description of AXI4 signals.	
irq	System	0	System interrupt output.	
tx_sysref	System	I	SYSREF input. When Subclass 1 mode is selected, this signal is required and used by the core to set the phase of the local extended multi-block clock. This SYSREF signal must be generated synchronous to the core clock. This input should be driven from an external device generating SYSREF for both TX and RX on a link.	

Table 2-1: TX Core: Port Descriptions

Signal Name	Interface	Direction	Description
tx_sync	System	I	Sync signal. The sync signal is defined as an active-Low sync request signal by JESD204 so this signal is Low until comma alignment is completed and High to request ILA and normal data. This signal is only available when the core is generated with 8B10B linecoding selected.
	JESD2	04_PHY Int	terface Ports
gtN_txdata[63:0]	PHY	0	TX data to JESD204 PHY. N = Lanes - 1
gtN_txheader[1:0]	PHY	0	TX header to JESD204 PHY. N = Lanes - 1
gtN_txcharisk[3:0]	РНҮ	0	TX Char is K to JESD204 PHY. N = Lanes -1

Transmit Interface (64B66B linecoding only)				
tx_tdata [(64*N)-1:0	s_axis_tx	Ι	Transmit data input. N = Lanes - 1	
tx_tready	s_axis_tx	0	AXI4-Stream tready.	
tx_soemb	s_axis_tx	0	Start of extended multi-block boundary indication. Set to 1 to indicate tx_tdata in the following clock cycle is the start of an extended multi-block.	
tx_cmd_tdata[(19*N)-1:0	s_axis_tx_cmd	I	Transmit Cmd interface N = Lanes - 1 For Meta mode = CRC, Cmd payload is bits [6:0] with bits [18:7] set to Zero. For Meta mode = Cmd, Cmd payload is [18:0]	
tx_cmd_tvalid	s_axis_tx_cmd	I	AXI4-Stream tvalid.	
tx_cmd_tready	s_axis_tx_cmd	Ο	AXI4-Stream tready. tx_cmd_tready will be set for 1 cycle every multi-block to control the Cmd word flow.	

Transmit interface (8B10B Linecoding only)

Table 2-2:	Transmit	Interface	Port	Descrip	tions

Signal Name	Interface	Direction	Description
tx_tdata [(32*N)-1:0	s_axis_tx	I	Transmit data input. N = Lanes - 1
tx_tready	s_axis_tx	0	AXI4-Stream tready

Signal Name	Interface	Direction	Description
tx_sof	s_axis_tx	Ο	 Start of frame boundary indication. The signal is four bits to indicate the byte position of the first byte of a frame in tdata in the following clock cycle. When start_of_frame = 0001, the first byte of a frame is in bits [7:0] of the tdata word with the next 3 bytes in bits[31:8]. When start_of_frame = 0010, the first byte is in bits [15:8] of the tdata word with the next 2 bytes in bits[31:16]; bits [7:0] contain the end of the previous frame. When start_of_frame = 0100, the first byte is in bits [23:16] of the tdata word with the next byte in bits[31:24]; bits [15:0] contain the end of the previous frame. When start_of_frame = 1000, tdata contains the last 3 bytes of the previous frame in bits [23:0] and the first byte of a new frame in bits [31:24].
tx_somf	s_axis_tx	0	Start of multi-frame boundary indication. The position of the first byte of each multi-frame is encoded in the same way as tx_sof.

Table 2-2: Transmit Interface Port Descriptions

RX Core

Table 2-3:	RX Core:	Port	Descriptions
------------	-----------------	------	--------------

Signal Name	Interface	Direction	Description			
System Signals						
rx_core_clk	System s_axis_rx s_axis_rx_cmd	I	Core logic clock input. Frequency: Serial line rate / 66 (for 64B66B linecoding) or Serial line rate / 40 (for 8B10B linecoding)			
rx_core_reset	System	I	Core asynchronous logic reset active high.			
rx_aresetn	s_axis_rx s_axis_rx_cmd	0	AXI4-Stream interface reset. Active low. Associated with both data and command interfaces.			
rx_reset_gt	System	0	JESD204_PHY RX datapath reset. Core output to reset the receive datapath in a connected JESD204_PHY. This must be connected to a JESD204_PHY.			
rx_reset_done	System	I	JESD204_PHY RX reset done input. Indicates the JESD204_PHY has completed the receive reset process.			
s_axi_aclk	s_axi	I	AXI4-Lite clock input.			

Signal Name	Interface	Direction	Description
s_axi_aresetn	s_axi	I	AXI4-Lite reset input. Active Low.
s_axi*	s_axi	I	See Appendix A of the Vivado AXI Reference Guide (UG1037) [Ref 10] for a description of AXI4 signals.
Irq	System	0	System interrupt output.
rx_sysref	System	I	SYSREF input. When Subclass 1 mode is selected, this signal is required and used by the core to set the phase of the local extended multi-block clock. This SYSREF signal must be generated synchronous to the core clock. This input should be driven from an external device generating SYSREF for both TX and RX on a link.
rx_sync	System	0	Sync signal. The sync signal is defined as an active-Low sync request signal by JESD204, so this signal is Low until comma alignment is completed and High to indicate the receiver is ready for ILA and normal data. This signal is only available when the core is generated with 8B10B linecoding selected.
	JESD	204_PHY Int	terface Ports
gtN_rxdata[63:0]	PHY	I	RX data from JESD204 PHY. N = Lanes - 1
gtN_rxheader[1:0]	PHY	I	RX header from JESD204 PHY. N = Lanes - 1
gtN_misalign	РНҮ	I	Signal from JESD204 PHY to indicate a misaligned sync header was detected.
gtN_block_sync	РНҮ	I	Signal from JESD204 PHY to indicate block sync status.
gtN_rxcharisk[3:0]	PHY	I	RX Char is K from JESD204 PHY. N = Lanes -1
gtN_rxdisperr[3:0]	РНҮ	I	RX Disparity Error from JESD204 PHY. N = Lanes -1
gtN_notintable[3:0]	РНҮ		RX Not In Table Error from JESD204 PHY. N = Lanes -1
	Receive Inte	rface (64B6	6B Linecoding only)
rx_tdata [(64*N)-1:0	s_axis_rx	0	Receive data output. N = Lanes - 1
rx_tready	s_axis_rx	0	AXI4-Stream tready.
rx_soemb	s_axis_rx	0	Start of extended multi-block boundary indication. Set to 1 to indicate tx_tdata in the following clock cycle is the start of an extended multi-block.
rx_emb_err	s_axis_rx	0	Extended Multi-block Error. Set to 1 on the last block of an extended multi-block if a multi-block alignment error was detected.

Signal Name	Interface	Direction	Description
rx_crc_err	s_axis_rx	0	CRC error. Set to 1 on the last block of an multi-block if a CRC or Uncorrectable FEC error was detected within the multi-block
rx_cmd_tdata[(19*N)-1:0	s_axis_rx_cmd	0	Transmit Cmd interface N = Lanes - 1 For Meta mode = CRC, Cmd payload is bits [6:0] with bits [18:7] set to Zero. For Meta mode = Cmd, Cmd payload is [18:0]
rx_cmd_tvalid	s_axis_rx_cmd	0	AXI4-Stream tvalid. rx_cmd_tvalid will be set for 1 cycle every multi-block to control the Cmd word flow.
rx_cmd_tready	s_axis_rx_cmd	I	AXI4-Stream tready.

Table 2-3: RX Core: Port Descriptions

Receive interface (8B10B Linecoding only)

Signal Name	Interface	Direction	Description
rx_tdata [(32*N)-1:0	s_axis_rx	0	Receive data output. N = Lanes - 1
rx_tvalid	s_axis_rx	0	AXI4-Stream tvalid
rx_sof[3:0]	s_axis_rx	0	Start of frame boundary indication. The position of the first byte in a frame is encoded in the same way as tx_sof. This signal is asserted one cycle before the AXI4-Stream data. The alignment of the first valid byte is always in byte 0 if the multi-frame size is a multiple of 4 and rx_buffer_delay
			is a multiple of 4.
rx_somf[3:0]	s_axis_rx	О	Start of multi-frame boundary indication. The position of the first byte of each multi-frame is encoded in the same way as rx_sof.
rx_frm_err[3:0]	s_axis_rx	0	Error in byte. JESD204 specifies that data must be replicated from the previous frame if certain errors occur. The core does not buffer the previous frame. You can choose to implement a frame buffer or use a buffer elsewhere in the system to perform this function if required. The rx_frm_err signal indicates that a single byte error exists in the data stream. There is one bit for each byte of each AXI stream. For example, a four lane interface has four 32-bit AXI streams, the error signal is 16 bits wide with bit 15 of the error signal corresponding to the most significant byte of lane 4 and bit 0 of the error signal corresponding to the least significant byte of lane 1. This signal is synchronous to rx_core_clk and output in the cycle before the data in the same way as rx_sof.

Table 2-4: Receive Interface Port Descriptions

 \bigcirc

Register Space

The JESD204C core is configured using an AXI4-Lite Register Interface. The register map is shown in Table 2-5.

The RX and TX cores share a common address map and register definitions where possible, exceptions are highlighted.

RECOMMENDED: Xilinx recommends that if significant configuration changes are made using the control registers (in particular, changes to framing parameters), the core should be reset to ensure that the link is resynchronized using the updated parameters.

			66B	8B10B	
AXI4-Lite Address	Register Name	TX Access Type	RX Access Type	TX Access Type	RX Access Type
0x000	IP_VERSION	R	R	R	R
0x004	IP_CONFIG	R	R	R	R
0x020	RESET	RW	RW	RW	RW
0x024	CTRL_ENABLE	RW	RW	N/A	N/A
0x028	CTRL_TX_SYNC	N/A	N/A	RW	N/A
0x030	CTRL_MB_IN_EMB	RW	RW	N/A	N/A
0x034	CTRL_SUB_CLASS	RW	RW	RW	RW
0x038	CTRL_META_MODE	RW	RW	N/A	N/A
0x03C	CTRL_8B10B_CFG	N/A	N/A	RW	RW
0x040	CTRL_LANE_ENA	RW	RW	RW	RW
0x044	CTRL_RX_BUF_ADV	N/A	RW	N/A	RW
0x048	CTRL_TEST_MODE	N/A	N/A	RW	RW
0x04C	CTRL_RX_MBLOCK_TH	N/A	RW	N/A	N/A
0x050	CTRL_SYSREF	RW	RW	RW	RW
0x054	STAT_LOCK_DEBUG	N/A	R	N/A	N/A
0x058	STAT_RX_ERR	N/A	N/A	N/A	R
0x05C	STAT_RX_DEBUG	N/A	N/A	N/A	R
0x060	STAT_STATUS	R	R	R	R
0x064	CTRL_IRQ	RW	RW	RW	RW
0x068	STAT_IRQ	R	R	R	R
0x070	CTRL_TX_ILA_CFG0	N/A	N/A	RW	N/A
0x074	CTRL_TX_ILA_CFG1	N/A	N/A	RW	N/A
0x078	CTRL_TX_ILA_CFG2	N/A	N/A	RW	N/A
0x07C	CTRL_TX_ILA_CFG3	N/A	N/A	RW	N/A
0x080	CTRL_TX_ILA_CFG4	N/A	N/A	RW	N/A

Table 2-5: Register Address Map

		64B	64B66B		10B
AXI4-Lite Address	Register Name	TX Access Type	RX Access Type	TX Access Type	RX Access Type
0x400 ⁽¹⁾	(Lane 0) STAT_RX_BUF_LVL	N/A	R	N/A	R
0x404 ⁽¹⁾	(Lane 0) CTRL_TX_ILA_LID	N/A	N/A	RW	N/A
0x410 ⁽¹⁾	(Lane 0) STAT_RX_ERROR_CNT0	N/A	R	N/A	N/A
0x414 ⁽¹⁾	(Lane 0) STAT_RX_ERROR_CNT1	N/A	R	N/A	N/A
0x420 ⁽¹⁾	(Lane0) STAT_LINK_ERR_CNT	N/A	N/A	N/A	R
0x424 ⁽¹⁾	(Lane0) STAT_TEST_ERR_CNT	N/A	N/A	N/A	R
0x428 ⁽¹⁾	(Lane0) STAT_TEST_ILA_CNT	N/A	N/A	N/A	R
0x42C ⁽¹⁾	(Lane0) STAT_TEST_MF_CNT	N/A	N/A	N/A	R
0x430 ⁽¹⁾	(Lane0) CTRL_RX_ILA_CFG0	N/A	N/A	N/A	R
0x434 ⁽¹⁾	(Lane0) CTRL_RX_ILA_CFG1	N/A	N/A	N/A	R
0x438 ⁽¹⁾	(Lane0) CTRL_RX_ILA_CFG2	N/A	N/A	N/A	R
0x43C ⁽¹⁾	(Lane0) CTRL_RX_ILA_CFG3	N/A	N/A	N/A	R
0x440 ⁽¹⁾	(Lane0) CTRL_RX_ILA_CFG4	N/A	N/A	N/A	R
0x444 ⁽¹⁾	(Lane0) CTRL_RX_ILA_CFG5	N/A	N/A	N/A	R
0x448 ⁽¹⁾	(Lane0) CTRL_RX_ILA_CFG6	N/A	N/A	N/A	R
0x44C ⁽¹⁾	(Lane0) CTRL_RX_ILA_CFG7	N/A	N/A	N/A	
1. As show	n, lane 0 registers start at 0x400. Lan	e 1 registers occup	y the equivalent	space starting at	0x480, lanes 2-7

Table 2-5: Register Address Map (Cont'd)

follow the same pattern (i.e., lane 2 = 0x500, lane 3 = 0x580, etc.).

Table 2-6: IP_VERSION

Bits	Default Value	Description
31:24	-	Version: Major
23:16	-	Version: Minor
15:8	-	Version: Revision
7:0	-	Reserved (read 0x00)

Register Address Map

Table 2-7: IP_CONFIG

Bits	Default Value	Description
17	-	1 = Core is 64B66B 0 = Core is 8B10B
16	-	1 = Core is TX 0 = Core is RX
3:0	-	Number of lanes in core.

Register Address Map

Table 2-8: RESET

Bits	Default Value	Description
0	0	Reset. (not self-clearing) 1 = put core into reset 0 = Release core from reset Once set to 0. This bit will read back 1 until the reset process is completed.

Register Address Map

Table 2-9: CTRL_ENABLE

Bits	Default Value	Description
1	0	Enable Data Interface. 1 = Enables the AXI4-Stream Data interface and transmits/receives data on the link. 0 = The link will be transmitting/receiving scrambled 0s
0	0	Enable Cmd interface. 1 = Enables the AXI4-Stream Cmd interface and the associated processing of the sync header meta data. 0 = Cmd words will be zeroed.

Register Address Map

Table 2-10: CTRL_TX_SYNC

Bits	Default Value	Description
0	0	tx_sync_force. Force on 8B10B transmitter. When set to 1, this register overrides the value on the tx_sync pin.

Register Address Map

Table 2-11: CTRL_MB_IN_EMB

Bits	Default Value	Description
7:0	1	Number of multi-blocks in an extended multi-block. Program this register with the actual value. Note: 0 is Not valid.

Table 2-12: CTRL_SUB_CLASS

Bits	Default Value	Description
1:0	1	Sub Class: 0 = Subclass 0 1 = Subclass 1 2 = Subclass 2 (8B10B only)

Register Address Map

Table 2-13: CTRL_META_MODE

Bits	Default Value	Description
1:0	0	Meta Mode: 0 = CRC12 1 = CRC3 (TBD) 2 = CMD 3 = FEC

Register Address Map

Table 2-14: CTRL_8B10B_CFG

Bits	Default Value	Description
31:24	0x3	ILA multi-frames. Multiframes in the Transmitted Initial Lane Alignment Sequence. Parameter Range: 4–256; program the register with required value minus 1.
21:20	0x0	Reserved. Must be set to zero.
19	0	Link Error Counters Enable: 1 = Enable Link Error counters (Link errors are counted and reported using Link Error Count registers per lane) 0 = Disable Link Error counters
18	0	Error Reporting via sync: 1 = Error reporting using SYNC interface Enabled 0 = Error reporting using SYNC interface Disabled
17	1	ILA Required: 1 = Enable ILA Support 0 = Disable ILA Support
16	1	Scrambling: 1 = Enable Scrambling 0 = Disable Scrambling

Table 2-14: CTRL_8B10B_CFG

Bits	Default Value	Description
12:8	0x15	Frames per Multiframe (K) Parameter range 1–32; Program register with required value minus 1 (for example, for K = 16, 0x0F should be programmed)
7:0	0x1	Octets per Frame (F) Parameter range 1–256; Program register with required value minus 1 (for example, for F = 4, 0x03 should be programmed)

Register Address Map

Table 2-15: CTRL_LANE_ENA

Bits	Default Value	Description
7:0	-	Lane enable register. Default is all lanes enabled. Set 1 bit per lane (bit 0 = lane 0, bit 1 = lane 1 etc.)

Register Address Map

Table 2-16: CTRL_RX_BUF_ADV

Bits	Default Value	Description
9:0	0	Advance the release of the receiver buffer: For 64B66B linecoding, advance the release of the buffer by N 64 bit words. For 8B10B linecoding, advance the release of the buffer by N octets.

Register Address Map

Table 2-17: CTRL_TEST_MODE

Bits	Default Value	Description	
		Test mode select (8B10B mode):	
		000 = Normal operation	
		001 = Transmit receive /K28.5/ indefinitely	
2:0	0x0	010 = Synchronize as normal then transmit/receive repeated ILA sequences.	
		011 = Transmit D21.5 indefinitely (Tx only) ⁽¹⁾	
		101 = Transmit Modified Random Pattern RPAT (Tx Only) ⁽¹⁾	
		111 = Transmit Scrambled Jitter Pattern JSPAT (Tx Only) ⁽¹⁾	
1. These test modes are only applicable to the JESD204C 8B10B transmitter IP. They are used to set the transceiver			
to ou	to output specific patterns that may be used to evaluate the electrical characteristics of a link using tools such as		
IBERT	IBERT. A JESD204 8B10B receiver core will not synchronize or function if these test patterns are received.		

Table 2-18: CTRL_RX_MBLOCK_TH

Bits	Default Value	Description
2:0	0	MB lock threshold. How many correct/incorrect multi-block alignment markers are required to achieve/ lose multi-block lock. The actual value used is 1 plus the number in this register.

Register Address Map

Table 2-19: CTRL_SYSREF

Bits	Default Value	Description
19:16	0	SYSREF Delay: Add additional delay to SYSREF alignment of LMFC/LEMC. 1111 = 15 core_clk cycles delay 0000 = 0 core_clk cycles delay This register is used to retard the phase of the LMFC/LEMC.
1	0	 SYSREF Required on Re-Sync 1 = Following a Link Re-Sync event, a SYSREF event is required to re-align the local LMFC/LEMC before the link will operated. 0 = No SYSREF is required to restart a link after a Re-sync event.
0	0	 SYSREF Always 1 = The core will align the LMFC/LEMC counter on all SYSREF events. 0 = The core will only align the LMFC/LEMC counter on the first SYSREF event following a reset, all subsequent SYSREF events will be ignored.

Register Address Map

Table 2-20: STAT_LOCK_DEBUG

Bits	Default Value	Description
23:16	-	Lane indicator multi-block aligned. 1 bit per lane. Set to 1 when multi-block alignment is achieved. 0 otherwise.
7:0	-	Lane indicator 64B66B sync header aligned. 1 bit per lane. Set to 1 when sync header alignment is achieved. 0 otherwise.

Register Address Map

Table 2-21: **STAT_RX_ERR**

Bits	Default Value	Description
31:28	-	RX Error status lane 7
27:24	-	RX Error status lane 6

Table 2-21: STAT_RX_ERR

Bits	Default Value	Description
23:20	-	RX Error status lane 5
19:16	-	RX Error status lane 4
15:12	-	RX Error status lane 3
11:8	-	RX Error status lane 2
7:4	-	RX Error status lane 1
3:0	-	RX Error status lane 0 Bit 3: unused Bit 2: Unexpected K-character(s) received Bit 1: Disparity Error(s) received Bit 0: Not in table Error(s) received Each bit indicates that 1 or more errors of that type have been received in Lane 0 since the register was last read. All status bits are cleared to 0 on read of this register.

Register Address Map

Table 2-22: **STAT_RX_DEBUG**

Bits	Default Value	Description
31:28	-	Link Debug status Lane 7 as per lane 0
27:24	-	Link Debug status Lane 6 as per lane 0
23:20	-	Link Debug status Lane 5 as per lane 0
19:16	-	Link Debug status Lane 4 as per lane 0
15:12	-	Link Debug status Lane 3 as per lane 0
11:8	-	Link Debug status Lane 2 as per lane 0
7:4	-	Link Debug status Lane 1 as per lane 0
3:0	-	Link Debug status Lane 0 Bit 3: 1 = Start of Data was Detected ⁽¹⁾ Bit 2: 1 = Start of ILA was Detected ⁽¹⁾ Bit 1: 1 = Lane has Code Group Sync ⁽²⁾ Bit 0: 1 = Lane is currently receiving K28.5's (BC alignment characters) ⁽²⁾

Notes:

1. The status bits 3:2 latch when set and are cleared on read or when the core is reset. If the core is streaming data when these bits are cleared, they are instantly set again. The purpose of these bits is to detect whether these conditions have occurred since SYNC was asserted.

2. The status bits 1:0 show instantaneous status.

Table 2-23: STAT_STATUS

Bits	Default Value	Description
15	-	8B10B Alignment Error: 1= An 8B10B RX misalignment has been detected. Misalignment is determined by monitoring the Multi-frame framing characters. If eight consecutive framing characters are detected in misaligned positions, then this bit is asserted.
14	-	8B10B RX started: 1 = The link has started outputting data on the AXI-Stream port. This bit is applicable to an 8B10B RX only.
13	-	8B10B CGS status: 1 = The link has achieved Code Group Sync. This bit is applicable to an 8B10B RX only.
12	-	8B10B SYNC status: 1 = The receiver has signaled SYNC has been achieved. This bit is applicable to a *b10B link only.
10	-	Buffer overflow error. 1 = The receiver buffer has overflowed.
5	-	64B66B Multi-block Lock Status: 1 = Multi-block lock achieved on all lanes This bit is a logical OR of the individual lane status bits.
4	-	64B66B Sync Header Lock Status: 1 = Sync Header lock achieved on all lanes. This bit is a logical OR of the individual lane status bits
2	-	SYSREF error. A sysref was detected out of phase with the local extended multi-block clock.
1	-	SYSREF captured.
0	-	Interrupt pending.

Table 2-24: CTRL_IRQ

Bits	Default Value	Description
14	0	1 = Enable interrupt on 8B10B RX AXI-Stream data start.
13	0	1 = Enable interrupt on 8B10B RX Resync request.
12	0	1 = Enable interrupt on 8B10B SYNC assertion.
10	0	1 = Enable Interrupt on overflow Error.
9	0	1 = Enable Interrupt on 64B66B FEC Error.
8	0	1 = Enable Interrupt on 64B66B CRC Error.
7	0	1 = Enable Interrupt on 64B66B Multi-block Error.
6	0	1 = Enable Interrupt on 64B66B Block Sync Error.
5	0	1 = Enable Interrupt on Loss of 64B66B Multi-block Lock.
4	0	1 = Enable Interrupt on Loss of 64B66B Sync Header Lock.

Table 2-24: CTRL_IRQ

Bits	Default Value	Description
2	0	1 = Enable Interrupt on SYSREF Error.
1	0	1 = Enable Interrupt on SYSREF Received.
0	0	Global Interrupt Enable: Must be set for any interrupt to function.

Register Address Map

Table 2-25:	STAT_IRQ
-------------	----------

Bits	Default Value	Description
14	-	1 = 8B10B RX AXI-Stream data start interrupt triggered.
13	-	1 = 8B10B RX Resync request interrupt triggered.
12	-	1 = 8B10B SYNC assertion interrupt triggered.
10	-	1 = Overflow Error Interrupt triggered.
9	-	1 = 64B66B FEC Error detected Interrupt triggered.
8	-	1 = 64B66B CRC Error detected Interrupt triggered.
7	-	1 = 64B66B Multi-block Error detected Interrupt triggered.
6	-	1 = 64B66B Block Sync Error detected Interrupt triggered.
5	-	1 = 64B66B Multi-block Lock Status Interrupt triggered.
4	-	1 = 64B66B Sync Header Lock Status Interrupt triggered.
2	-	1 = SYSREF Error Interrupt triggered.
1	-	1 = SYSREF Received Interrupt triggered.

Table 2-26: CTRL_TX_ILA_CFG0

Bits	Default Value	Description
11:8	0x0	BID (Bank ID). Binary value.
7:0	0x00	DID (Device ID). Binary value.

Register Address Map

Table 2-27: CTRL_TX_ILA_CFG1

Bits	Default Value	Description
31:26	-	Reserved
25:24	00	CS (Control bits per Sample). Binary value.
23:21	-	Reserved
20:16	00000	N' (Totals bits per Sample). Binary value minus 1.
15:13	-	Reserved
12:8	00000	N (Converter Resolution). Binary value minus 1.
7:0	0x00	M (Converters per Device). Binary value minus 1.

Register Address Map

Table 2-28: CTRL_TX_ILA_CFG2

Bits	Default Value	Description
28:24	00000	CF (Control Words per Frame). Binary value.
16	0	HD (High Density format)
12:8	00000	S (Samples per Converter per Frame). Binary value minus 1.

Register Address Map

Table 2-29: CTRL_TX_ILA_CFG3

Bits	Default Value	Description
31:17	-	Reserved
16	0	ADJDIR (Adjust Direction) [Subclass 2 Only]. Binary value.
15:9	-	Reserved
8	0	PHADJ (Phase Adjust Request) [Subclass 2 Only]. Binary value.
7:4	-	Reserved
3:0	0x0	ADJCNT (Phase Adjust Request) [Subclass 2 Only]. Binary value. RX: captured configuration data from the ILA sequence (per lane). TX: Sets the values to be transmitted in the ILA sequence for all lanes.

Table 2-30: CTRL_TX_ILA_CFG4

Bits	Default Value	Description
15:8	0x00	RES2 (Reserved Field 2)
7:0	0x00	RES1 (Reserved Field 1)

Register Address Map

Table 2-31: STAT_RX_BUF_LVL

Note: This is a Per Lane Register

Bits	Default Value	Description
9:0	-	Buffer fill level. The amount of data in the receiver buffer for lane 0. For 64B66B linecoding: The value returned is the number of 64-bit words in the buffer. For 8B10B Linecoding: The value returned is the number of bytes in the buffer.

Register Address Map

Table 2-32: CTRL_TX_ILA_LID

Note: This is a Per Lane Register

Bits	Default Value	Description
31:5	-	Reserved
4:0	N	ID of lane N. Value can be anywhere between 0 and 31. The default value N is set to the lane number. For interfaces using more than 8 lanes and hence multiple JESD204 cores. This register should be programmed to ensure each lane has the correct identifier.

Register Address Map

Table 2-33: STAT_RX_ERROR_CNT0

Note: This is a *Per Lane* Register. The counts are cumulative and are cleared on read or reset.

Bits	Default Value	Description
31:16	-	CRC error counter.
15:8	-	64B66B Multi-block alignment error counter.
7:0	-	64B66B Sync Header alignment error counter.

Table 2-34: **STAT_RX_ERROR_CNT1**

Note: This is a *Per Lane* Register. The counts are cumulative and are cleared on read or reset.

Bits	Default Value	Description
31:16	-	64B66B FEC uncorrected errors counter.
15:0	-	64B66B FEC corrected errors counter.

Register Address Map

Table 2-35: STAT_LINK_ERR_CNT

Note: This is a Per Lane Register.

Bits	Default Value	Description
31:0	-	Link Error Count Count of total received link errors (per lane) when Link Error Counters is Enabled. Errors counted are Disparity or Not In Table errors indicated by the lane. The error counter can be reset by disabling and re-enabling using the control bit in the Error Reporting register.

Register Address Map

Table 2-36: **STAT_TEST_ERR_CNT**

Note: This is a Per Lane Register.

Bits	Default Value	Description
31:0	-	Test Mode Error Count Count of Errors received in Data link Layer test modes. Test Mode = 001 (Continuous K28.5): counts any non K28.5 characters received Test Mode = 010 (Continuous ILA): counts any unexpected characters received This count resets to zero on transition to an active test mode and retains any count value on transition out of an active test mode.

Register Address Map

Table 2-37: STAT_TEST_ILA_CNT

Note: This is a Per Lane Register.

Bits	Default Value	Description
31:0	-	Test Mode ILA Count Count of total ILA Sequences received when Test Mode = 010 (Continuous ILA) This count resets to zero on transition to Test Mode = 010, and retains any count value on transition out of test mode.

Table 2-38: STAT_TEST_MF_CNT

Note: This is a Per Lane Register.

Bits	Default Value	Description
31:0	-	Test Mode Multiframe Count Count of total ILA Multiframes received when Test Mode = 010 (Continuous ILA) This count resets to zero on transition to Test Mode = 010 and retains any count value on transition out of test mode.

Register Address Map

Table 2-39: CTRL_RX_ILA_CFG0

Note: This is a Per Lane Register.

Bits	Default Value	Description
31:11	-	Reserved
10:8	-	JESDV (JESD204 version): 000=JESD204A 001=JESD204B
7:3	-	Reserved
2:0	-	SUBCLASS: 000=Subclass0 001=Subclass1 010=Subclass2

Register Address Map

Table 2-40: CTRL_RX_ILA_CFG1

Note: This is a Per Lane Register.

Bits	Default Value	Description
31:8	-	Reserved
7:0	-	F (Octets per Frame). Binary value minus 1.

Register Address Map

Table 2-41: CTRL_RX_ILA_CFG2

Note: This is a Per Lane Register.

Bits	Default Value	Description
31:5	-	Reserved
4:0	-	K (Frames per Multiframe). Binary value minus 1.

Table 2-42: CTRL_RX_ILA_CFG3

Note: This is a Per Lane Register.

Bits	Default Value	Description	
31:29	-	Reserved	
28:24	-	L (Lanes per Link). Binary value minus 1.	
23:21	-	Reserved	
20:16	0x0	LID (Lane ID). Binary value.	
15:12	-	Reserved	
11:8	0x0	BID (Bank ID). Binary value.	
7:0	0x00	DID (Device ID). Binary value.	

Register Address Map

Table 2-43: CTRL_RX_ILA_CFG4

Note: This is a Per Lane Register.

Bits	Default Value	Description
31:26	-	Reserved
25:24		CS (Control bits per Sample). Binary value.
23:21	-	Reserved
20:16		N' (Totals bits per Sample). Binary value minus 1.
15:13	-	Reserved
12:8		N (Converter Resolution). Binary value minus 1.
7:0		M (Converters per Device). Binary value minus 1.

Register Address Map

Table 2-44: CTRL_RX_ILA_CFG5

Note: This is a Per Lane Register.

Bits	Default Value	Description	
31:29	-	Reserved	
28:24	00000	CF (Control Words per Frame). Binary value.	
23:17	-	Reserved	
16	0	HD (High Density format)	
15:13	-	Reserved	
12:8	00000	S (Samples per Converter per Frame). Binary value minus 1.	

Table 2-44: CTRL_RX_ILA_CFG5

Note: This is a Per Lane Register.

Bits	Default Value	Description	
7:1	-	Reserved	
0	-	SCR (Scrambling Enable) [RX only, not writeable for TX] 1 = enabled	

Register Address Map

Table 2-45: CTRL_RX_ILA_CFG6

Note: This is a Per Lane Register.

Bits	Default Value	Description		
31:17	-	Reserved		
16	0	ADJDIR (Adjust Direction) [Subclass 2 Only]. Binary value.		
15:9	-	Reserved		
8	-	PHADJ (Phase Adjust Request) [Subclass 2 Only]. Binary value.		
7:4	-	Reserved		
3:0	0x0	ADJCNT (Phase Adjust Request) [Subclass 2 Only]. Binary value. RX: captured configuration data from the ILA sequence (per lane). TX: Sets the values to be transmitted in the ILA sequence for all lanes.		

Register Address Map

Table 2-46: CTRL_RX_ILA_CFG7

Note: This is a Per Lane Register.

Bits	Default Value	Description		
31:24	-	Reserved		
23:16	0x00	FCHK (Checksum) [RX only, not writeable for TX]. Binary value.		
15:8	0x00	RES2 (Reserved Field 2)		
7:0	0x00	RES1 (Reserved Field 1)		

Chapter 3

Designing with the Core

This chapter provides a general description of how to use the JESD204C core in your designs and should be used in conjunction with Chapter 2, Product Specification, which describes specific core interfaces.

General Design Guidelines

This section describes the steps required to turn a JESD204C core into a fully-functioning design with user-application logic. It is important to know that not all implementations require all of the design steps listed in this chapter. Follow the logic design guidelines in this manual carefully.

Use the Example Design as a starting point

Each instance of the JESD204C core created by the Vivado® Design Suite is delivered with an example design that can be implemented in an FPGA and simulated. This design can be used as a starting point for your own design or can be used to troubleshoot your application, if necessary.

See Example Design for information about using and customizing the example designs for the JESD204C core.

Know the degree of difficulty

JESD204C designs are challenging to implement in any technology, and the degree of difficulty is further influenced by:

- Maximum system clock frequency
- Targeted device architecture
- Nature of your application

All JESD204C implementations require careful consideration of system performance requirements. Pipelining, logic mapping, placement constraints, and logic duplication are all methods that help boost system performance.

Keep it Registered

To simplify timing and increase systems performance in an FPGA design, keep all inputs and outputs between your application and the core registered. This means that all inputs and outputs from your application should come from, or connect to, a flip-flop. While registering signals may not be possible for all paths, it simplifies timing analysis and makes it easier for the Xilinx tools to place-and-route the design.

Recognize Time-Critical Signals

The XDC provided with the Example Design for the core identifies the critical signals and the timing constraints that should be applied. See Constraining the Core for further information.

Use Supported Design Flows

The core is synthesized in the Vivado IDE and is delivered as Verilog. The example implementation scripts currently provided use Vivado synthesis as the synthesis tool for the IP integrator example design that is delivered with the core. Other synthesis tools can be used.

Make only Allowed Modifications

The JESD204C core is not user-modifiable. Any modifications can have adverse effects on system timing and protocol compliance. Supported user configurations of the JESD204C core can only be made by selecting the options from within the Vivado Customize IP dialog box and using the top-level parameters described in this document. See Design Flow Steps for more information.

Recommended Design Experience

Although the JESD204C core is a fully-verified solution. The challenges associated with implementing a complete design vary depending on the configuration and functionality of the application. For best results, previous experience in building high-performance, pipelined FPGA designs using Xilinx implementation tools and the XDC is recommended.

Contact your local Xilinx representative for a closer review and estimation for your specific requirements.

Subclass Mode

The JESD204C core supports operation in two JESD204C Subclass modes (0 and 1) for 64B66B linecoding, and three Subclass modes (0, 1 and 2) for 8B10B linecoding.

This is controlled by a register setting. By default the core operates in Subclass 1 mode.

The core pinout for 64B66B supports both subclass modes of operation, however an externally generated SYSREF is required for Subclass 1 operation. For Subclasses 0, the SYSREF input signal is not required and can be tied off.

The core pinout for 8B10B supports all three subclass modes of operation, however an externally generated SYSREF is required for Subclass 1 operation. For Subclasses 0 and 2, the SYSREF input signal is not required and can be tied off.

Subclass 0

Subclass 0 is supported for both 64B66B and 8B10B linecoding. Subclass 0 does not support Deterministic Latency and the SYSREF input is not required.

Subclass 1

Subclass 1 is supported for both 64B66B and 8B10B linecoding. Subclass 1 supports deterministic latency through the use of a common SYSREF signal between the converter and logic device. The SYSREF signal is generated external to the core, and is distributed to all devices within a system. SYSREF is permitted by the JESD204C standard to be either a *one-shot, periodic,* or *gapped periodic.* The JESD204C core is capable of operating with any of these selections. The timing and clocking requirements for the reliable capture of SYSREF are key to achieving reliable deterministic latency.

Subclass 2

Subclass 2 is only supported for 8B10B linecoding. Subclass 2 supports deterministic latency using only the SYNC signal. The timing and clocking requirements for the launch (by an RX core), and capture (by a TX core) of the SYNC signal are key to achieving reliable deterministic latency. Care must be taken to ensure the timing of this signal is met.

Programming the Core

Run time operation of the JESD204C core is configured through an AXI4-Lite register interface. See Register Space for details of the register map and available configuration registers.

For correct operation and bring-up of a JESD204C link, it is important that the major framing and link operation parameters match at both ends of the link. These parameters are determined by the configurations available in the ADC/DAC converter device to which the core is interfacing.

For 64B66B Linecoding, these are:

- Meta Mode
- Multi-blocks in Extended Multi-block

- Subclass mode
- SYSREF handling (for subclass 1 mode)

For 8B10B Linecoding, these are:

- Octets per frame
- Frames per Multi-frame
- Scrambling On/Off
- Subclass mode
- SYSREF handling (for subclass 1 mode)

For 8B10B transmitter cores, in addition to the above parameters, some of the additional content of the configuration data which is transmitted in the ILA sequence at link start-up is also programmed through the register interface. The data values transmitted in the ILA configuration data are not normally critical to the operation of the link, but this is dependent on the behavior of the receiving device.

For 8B10B receive cores, the configuration data received in the ILA sequence is captured for each lane and can be examined using the register interface.

After programming the link parameters the JESD204C core must be reset to restart the link using the newly programmed values. If the JESD204C core is not reset after programming, the new parameters will not be used.

Clocking

IMPORTANT: It is strongly recommended that you use one of the clocking schemes presented in this section. Use of alternative clocking schemes may lead to design failure.

The JESD204C specification [Ref 9] does not define specific serial line rates for any JESD204C link, but a valid range of line rates from 312.5 Mb/s to 32 Gb/s. The JESD204C core supports 8B10B linecoding at line rates from 1 Gb/s to 16,375 Gb/s (depending on the part and speed grade selection) and 64B66B linecoding at line rates from 1 Gb/s to 32 Gb/s (depending on the part and speed grade selection). In most instances, the serial line rate selection is governed by the specifications of the ADC/DAC Converter device(s) to which the core is interfaced. The required operating serial line rate directly relates to the clock rate at which the core logic operates (core clock); the serial line rate also governs the selection of the reference clock required by the transceiver(s).

Core Clock 64B66B linecoding

The JESD204C 64B66B core operates using a 64-bit (8-byte) datapath. The core clock frequency is always the line rate divided by 66. For example, for a serial line rate of 16.5 Gb/s, the core clock frequency is 250 MHz.

The AXI4-streaming RX / TX Data and Cmd interfaces operate at this core clock frequency. TX and RX core clock should be used as the clock source for these interfaces.

Core Clock 8B10B Linecoding

The JESD204C 8B10B core operates using a 32-bit (4-byte) datapath. The core clock frequency is always the line rate divided by 40. For example, for a serial line rate of 12.5 Gb/s, the core clock frequency is 312.5 MHz.

The AXI4-streaming RX and TX Data interfaces operate at this core clock frequency. TX and RX core clock should be used as the clock source for these interfaces.

Reference Clock

The GTY serial transceivers in the JESD204_PHY require a stable, low-jitter reference clock which has a device and speed grade-dependent range. In some circumstances, it can be advantageous to use the same clock frequency for both core clock and reference clock. However this might not always be practical. It is important to understand the limitations imposed on the reference clock and core clock, together with system-level implications such as the synchronous capture of SYSREF for Subclass 1.

AXI4-Lite Interface Clock

The JESD204C core is configured and monitored through an AXI4-Lite processor interface. The clock for this interface is separate and independent from the core and reference clocks.

DRP Clock

JESD204C system implementation requires the use of a JESD204 PHY core. The JESD204_PHY core must be supplied with a DRP clock (see JESD204 PHY LogiCORE IP Product Guide PG198 [Ref 11]).

Separate Transceiver Reference and Core Clocks

For JESD204C, the most generic and flexible clocking scheme uses separate transceiver reference and JESD204C core clocks supplied to the FPGA. In this configuration, the reference and core clocks are physically separate and can be run at independent, but related, frequencies, without additional constraints.

The reference clock can be run at any frequency within the limitations of the transceiver for the selected line rate. The core clock always runs at the required rate (1/66th or 1/40th of the serial line rate).

This configuration is shown in Figure 3-1 for 64B66B linecoding, and Figure 3-2 for 8B10B linecoding.

* example frequencies. 64B66B Line Rate = 16.5 Gb/s

* example frequencies. 8B10B Line Rate = 8.0Gb/s

Figure 3-2: Separate Transceiver Reference Clock and Core Clock: 8B10B Example

Transceiver Reference Clock used as Core Clock

For some systems it is possible to run a single clock input which acts as both the transceiver reference clock and the JESD204C core clock. While this configuration can sometimes simplify a system design, it is not always compatible.

For 64B66B systems, the required core clock frequency is not suitable for use as a reference clock for a JESD204 PHY configured to use the CPLL (therefore QPLL 0 or 1 must be used if a single clock is required, or two clocks must be supplied if the CPLL must be used). In this configuration, the input transceiver reference clock must always be the required rate (1/ 66th of the serial line rate for 64B66B systems or 1/40th of the serial line rate for 8B10B systems).

Note: When using this clocking scheme, the signal GT_POWERGOOD output from the JESD204_PHY must be connected to the CE pin on the BUFG_GT used to source core_clk from refclk.

This configuration is shown in Figure 3-3 and Figure 3-4.

* example frequencies. 64B66B Line Rate = 16.5 Gb/s

Figure 3-3: Transceiver Reference Clock used as Core Clock 64B66B example.

* example frequencies. 8B10B Line Rate = 8.0 Gb/s

Transceiver Output Clock used as Core Clock (Subclass 0)

For Subclass 0 only operation, the timing limitations imposed to support deterministic latency are removed, and a simplified clocking arrangement can be used which requires only a reference clock input. In this case the transceiver PLL is used to generate the core clock signal. In this configuration any clock frequency that is suitable to use as the transceiver reference cock is acceptable.

This configuration is shown in Figure 3-5.

Note: This configuration is not suitable for subclass 1 or 2 operation because the output phase of the transceiver PLL is unknown and therefore this clock cannot be used to reliably sample SYSREF or SYNC.

* example frequencies. Line Rate = 16.5Gb/s

Figure 3-5: Transceiver Output Clock used as Core Clock (Subclass 0)

Clocking Considerations

- Always refer to the device data sheet for the chosen part and speed grade to confirm which PLLs are available for a required line rate PLL selection for a particular rate may not be arbitrary.
- The CPLL supports a maximum line rate in any device of 12.5 Gb/s.
- If the CPLL is required, the transceiver reference clock cannot be used as the core clock when the core is configured for 64B66B linecoding because the acceptable reference clock input frequencies to the CPLL do not cover the required Line Rate/66 ratio. This restriction does not apply when the core is configured for 8B10B linecoding.
- For Line rates above 16.375G, ensure only port MGTREFCLK0 is used to drive QPLL0, and MGTREFCLK1 to drive QPLL1.

Resets

The reset inputs and outputs on the JESD204C core are as shown in Table 3-1.

Reset	Description		
tx/rx_core_reset	This reset input is asynchronous and active high. This reset input will reset the JESD204C core logic but does not reset the AXI4-Lite register interface - so all programmed register values will be maintained.		
s_axi_aresetn	This reset input must be synchronized with the AXI4-Lite interface clock. This reset input will reset the AXI4-Lite register interface.		
tx/rx_reset_gt	This reset output must be connected to the JESD204_PHY core. This signal is used to initiate a JESD204_PHY GT reset sequence.		
tx/rx_reset_done	This input must be connected to the JESD204_PHY core. This signal is used to hold the JESD204C core in reset until completion of the JESD204_PHY GT reset sequence. Note : A low input on this port will force the JESD204C core into a reset state.		
tx/rx_aresetn	This reset output is synchronous to tx/rx_core_clk. This output is an AXI4-Streaming interface reset signal to be used with the AXI4-streaming RX / TX Data and Cmd interfaces.		

Table 3-1: JESD204C Resets

Data and Command Interfaces

The transmitter and Receiver cores incorporate AXI4-Streaming interfaces for data ingress and egress. These AXI4-Stream interfaces include data and flow control signals only. In addition, there are supplementary control signals that are used to signal the timing of the data on the AXI4-Stream interface.

Note: The AXI4-Stream interfaces transfer the JESD204C transport layer - not raw converter samples. Refer to the appropriate converter data sheet for information on correctly mapping samples into the transport layer.

For a 64B66B transmitter, Figure 3-6 shows the timing of the tx_soemb (Start Of Extended Multiblock) signal relative to the AXI4-Stream data tx_tdata and tx_cmd_tdata. The tx_soemb signal is a single bit and it is set high in the cycle preceding the first data block of an extended multi-block. The data interface will transfer one 64-bit block B every core clock cycle. The command interface will transfer one 19-bit command every multi-block. If data is not available on the command interface (tx_cmd_tvalid = 1) then an IDLE command will be transmitted.

Figure 3-6: 64B66B Transmit Data Interface Timing

For a 64B66B receiver, Figure 3-7 shows the timing of the rx_soemb signal relative to the AXI4-Stream data rx_tdata . The rx_soemb signal is a single bit and it is set high in the cycle preceding the first data block of an extended multi-block. The command interface will transfer one word every multi-block.

Figure 3-7: 64B66B Receive Data Interface Timing

For an 8B10B transmitter, Figure 3-8 shows the timing of tx_sof (Start Of Frame) and tx_somf (Start Of Multiframe) signals relative to the AXI data $tx_tdata.tx_sof$ and tx_somf are fixed at four bits wide because the internal data width of each lane is 32 bits and the start of frame (or multiframe) can occur in any of the 4-byte positions of the 32-bit word. For multi-lane configurations, the start of frame (or multiframe) signal indicates the byte position of the first byte of a frame in $tx_tdata[31:0]$, $tx_tdata[63:32]$, $tx_tdata[95:64]$, etc. For example, in a four lane configuration when $tx_sof = 0001$ the first byte of four new frames appears in tx_tdata in a single cycle, $tx_tdata[7:0]$, $tx_tdata[39:32]$, $tx_tdata[71:64]$, and $tx_tdata[103:96]$.

Figure 3-8: 8B10B Transmit Data Interface Timing for F = 8 and K = 4

For an 8B10B receiver, Figure 3-9 shows the timing of rx_sof (Start Of Frame) and rx_somf (Start Of Multiframe) signals relative to the AXI data $rx_tdata. rx_sof$ and rx_somf are fixed at four bits wide because the internal data width of each lane is 32 bits and the start of frame (or multiframe) can occur in any of the 4-byte positions of the 32-bit word. For multi-lane configurations, the start of frame (or multiframe) signal indicates the byte position of the first byte of a frame in $rx_tdata[31:0]$, $rx_tdata[63:32]$, $rx_tdata[95:64]$, etc. For example, in a four lane configuration when $rx_sof = 0001$ the first byte of four new frames appears in rx_tdata in a single cycle, $rx_tdata[7:0]$, $rx_tdata[39:32]$, $rx_tdata[39:32]$, $rx_tdata[71:64]$, and $rx_tdata[103:96]$.

Figure 3-9: 8B10B Receive Data Interface Timing for F = 8 and K = 4

SYSREF

SYSREF Timing

When the JESD204C is used in Subclass 1, the SYSREF signal is the master timing reference for the system. To achieve accurate deterministic latency, the SYSREF signal must be captured synchronously to the core clock. To achieve this, the SYSREF period must be a multiple of 4-byte clock periods for 8B10B linecoding and 8-byte clock periods for 64B66B linecoding. This is because the core uses a 4-byte or 8-byte internal datapath for 8B10B and 64B66B respectively.

SYSREF Type

The accurate capture of SYSREF is critical in Subclass 1 operation. The JESD204C Specification allows SYSREF to be generated in any of the following ways:

- Periodic
- One-shot
- Gapped Periodic

For maximum flexibility, the JESD204C core provides several options for how SYSREF is handled for Subclass 1 operation.

It is important to note that because the JESD204 core operates using a 32-bit (4-byte) or 64-bit (8-byte) datapath, if a periodic or gapped periodic SYSREF is used in the system, the following conditions must be met:

- For 64B66B linecoding, the period must be an integer multiple of the Extended Multi-block period.
- For 8B10B linecoding, the period must be an integer multiple of the multi-frame period. It must also be a multiple of 4-byte clocks. Care must be taken to ensure both of these conditions are met if the multi-frame period is not a multiple of 4-byte clocks.

SYSREF Handling

SYSREF Delay

The SYREF Delay bits in the CTRL_SYSREF register can be used to add delay to the SYSREF signal after it is captured (see CTRL_SYSREF). This allows the effective phase of the LMFC/ LEMC to be adjusted. The value programmed into the SYSREF delay register equates to the number of core clock cycles that SYSREF will be delayed by.

For 8B10B linecoding, the deterministic latency mechanism as defined in the JESD204C standard requires that the multi-frame size be larger than the maximum possible delay across the link. In practice, this can be difficult to achieve, particularly with small frame sizes. However, as long as the multiframe size is greater than the maximum variation between lanes in delay across the link, then deterministic latency can be achieved. A potential issue occurs when the maximum lane delay variation causes the overall latency to straddle the boundary between two adjacent LMFC periods. In such a case, latency variations of exactly one LMFC period can be observed between system restarts. In this case the SYSREF may be delayed to adjust the LMFC boundary position to alleviate the problem.

For 64B66B linecoding, the deterministic latency mechanism defined in the JESD204C standard requires that the maximum variation between lanes in delay across the link be less than the Extended Multi-block size.

SYSREF Always

The SYSREF Always bit in the CTRL_SYSREF register provides the JESD204C core with a programmable option allowing the choice of how a periodic SYSREF is used internally (see CTRL_SYSREF).

When **SYSREF Always** is set to 0, only an initial SYSREF event seen after reset (or on link resynchronization) is used to align the internal LMFC counter. All subsequent SYSREF events will be ignored.

When **SYSREF Always** is set to 1, all SYSREF events are used to (re)align the LMFC counter. This setting requires that the SYSREF period be a correct multiple of the Multiframe / Extended Multiblock periods.

SYSREF Required

The SYSREF required bit in the CTRL_SYSREF register provides the JESD204C core with a programmable option allowing the choice of whether a SYSREF event is required or not for the link to restart after a resync request (see CTRL_SYSREF).

When **SYSREF Required** is set to 0, a resync request will automatically restart the link.

When **SYSREF Required** is set to 1, a resync request will stall until a new SYSREF event has been detected.

Capturing SYSREF

The synchronous capture of SYSREF is critical to the deterministic latency mechanism of JESD204C. By default, no constraints are applied to the SYSREF input. However, the required timing of the SYSREF input can be checked using the report_datasheet command in the Vivado Design Suite.

An example timing diagram is shown in Figure 3-10. This example uses the following settings:

core_clk period = 6.4 ns (6.25 Gb/s line rate with 8B10B linecoding)

In this example, the <code>report_datasheet</code> command gives a setup of 4.6 ns and hold of -1.5 ns for the SYSREF pin.

Figure 3-10: SYSREF Timing example

The easiest method to ensure a design will be able to reliably capture SYSREF is to use a programmable clock generator chip that allows fine delay adjustment of its outputs, to generate all the JESD204C clocks and SYSREF signals in the system. This will allow for the delay between core clock and SYSREF to be adjusted to meet the setup and hold requirements achieved by your design.

It is also possible to use an MMCM to adjust the phase of core clock internally to align with the setup and hold requirements.

SYSREF on Initial Link Bring-Up with 8B10B Linecoding

After a reset, a JESD204C core configured for subclass 1 operation requires at least one SYSREF event to align the internal LMFC counter, and bring up the link:

- A receive core requires an initial SYSREF event to align the LMFC, and then asserts SYNC on the next LMFC boundary when code group sync has been achieved. The core does not assert SYNC until an initial SYSREF event is detected.
- A transmit core requires a SYSREF event to align the LMFC. The core begins ILA transmission on an LMFC boundary after SYNC is asserted. The core does not begin ILA transmission until an initial SYSREF event is detected.

The system must ensure that SYSREF to the JESD204 core is generated after the core has completed reset. This is of particular importance if the system is operating a One-shot SYSREF.

SYSREF on Link Resynchronization with 8B10B linecoding

After initial bring-up, if a link re-synchronization is requested (by the deassertion of SYNC by the receiving device), the desired core behavior relative to SYSREF can be controlled using the **SYSREF Required** control bit in the CTRL_SYSREF Handling register.

When **SYSREF Required** is set to 0, no SYSREF event is required for the link to re-synchronize (the assumption is that LMFC counters continue to free-run and remain valid).

- A receive core asserts SYNC on the next LMFC boundary after code group sync.
- A transmit core transmits the ILA sequence on the next LMFC boundary after SYNC is asserted.

When **SYSREF Required** is set to 1, a SYSREF event is required for the link to re-establish SYNC following a re-sync request. In this case the behavior is the same as the initial link bring up detailed earlier.

This setting is particularly important in systems where a One-Shot SYSREF is used, or where SYSREF is periodic, but SYSREF Always is set to 0.

SYSREF on Initial Link Bring-Up with 64B66B linecoding

After a reset, a JESD204C core configured for subclass 1 operation requires at least one SYSREF event to align the internal LMBC counter, and bring up the link:

- A receiver core requires an initial SYSREF event to align the LMBC, The core does not start the LEMC counter until an initial SYSREF event is detected.
- A transmitter core requires a SYSREF event to align the LMBC. The core does not begin transmission of multi-blocks until an initial SYSREF event is detected. Therefore a link cannot achieve multi-block lock until after a SYSREF event has been seen by both a transmitter and a receiver.

The system must ensure that SYSREF to the JESD204C core is generated after the core has completed reset. This is of particular importance if the system is operating a One-shot SYSREF.

SYSREF on Link Resynchronization with 64B66B linecoding

After initial bring-up, if a link re-synchronization is requested by the receiving device, the desired core behavior relative to SYSREF can be controlled using the **SYSREF Required** control bit in the CTRL_SYSREF Handling register.

When **SYSREF Required** is set to 0, no SYSREF event is required for the link to re-synchronize (the assumption is that LMBC counters continue to free-run and remain valid).

www.xilinx.com

- A *receive* core will re-acquire multi-block lock and output received data on the next LMBC boundary.
- A *transmit* core will continue to transmit multi-block data.

When **SYSREF Required** is set to 1, a SYSREF event is required for the link to re-establish SYNC following a re-sync request. In this case, the behavior is the same as the initial link bring-up detailed earlier.

This setting is particularly important in systems where a One-shot SYSREF is used, or where SYSREF is periodic but **SYSREF Always** is set to 0.

Subclass 2 Operation (8B10B linecoding only)

The operation of the JESD204C circuit in Subclass 2 mode is similar to a device in Subclass 1 mode. In this case, deterministic latency across the link is achieved using the SYNC~ interface. When the receiver has aligned to the incoming idle characters from the transmitter, it asserts the SYNC signal. The transmitter detects this and waits until the next LMFC crossing before transmitting data or the ILA sequence (depending on the setting of the enable link synchronization control bit). The receiver buffers the data at its input until the next LMFC crossing at its side of the link, before sending the received data to the client.

Subclass 2 operation can be difficult to achieve at medium to high line rates due to the critical need to accurately capture the SYNC signal without violating the setup or hold requirements of the capturing flip flop. It is recommended that careful design validation is performed early to ensure this can be achieved.

Number of Lanes per link

The maximum number of lanes per link is eight. For interfaces which require more than eight lanes, simply create multiple cores with a maximum of eight lanes each.

For 8B10B *transmit* interfaces, the lane ID of each lane of a transmit core can be independently programmed using the Lane ID registers.

For 8B10B *receive* interfaces, the lane ID of each lane can be read from the LID field of the RX_ILA_CFG3 register for each lane.

This programmable Lane ID feature for 8B10B cores can also be utilized to share a single JESD204C core with multiple synchronous converters. For example, eight one lane converters may be connected to a single JESD204C core. If this is an 8B10B transmitter core, the Lane IDs can all be programmed to be lane 0.

For 64B66B cores, there are no Lane IDs so this is not applicable.

Design Flow Steps

This chapter describes customizing and generating the JESD204C core, constraining the core, and the simulation, synthesis and implementation steps that are specific to this IP core. More detailed information about the standard Vivado® design flows and the Vivado IP integrator can be found in the following Vivado Design Suite user guides:

- Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 1]
- Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 2]
- Vivado Design Suite User Guide: Getting Started (UG910) [Ref 3]
- Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 4]

Customizing and Generating the Core

This section includes information on using Xilinx tools to customize and generate the core in the Vivado Design Suite.

If you are customizing and generating the core in the IP integrator, see the *Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator* (UG994) [Ref 1] for detailed information. IP integrator might auto-compute certain configuration values when validating or generating the design. To check whether the values do change, see the description of the parameter in this chapter. To view the parameter value you can run the validate_bd_design command in the Tcl console.

You can customize the IP for use in your design by specifying values for the various parameters associated with the IP core using the following steps:

- 1. Select the IP from the Vivado IP catalog.
- 2. Double-click the selected IP or select the **Customize IP** command from the toolbar or right-click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 2] and the Vivado Design Suite User Guide: Getting Started (UG910) [Ref 3].

Note: Figures in this chapter are illustrations of the JESD204C GUI in the Vivado Integrated Design Environment (IDE). This layout might vary from the current version.

Configuration Tab

A	Re-customize IP	×
JESD204C (3.0)		4
🛿 Documentation 🛛 🗁 IP Location		
Show disabled ports	Component Name jesd204c_3	
	Configuration JESD204 PHY Configuration	
	Transmit or Receive	
	◯ Receive	
+ s_axi	Lanes per Link(L) 2 V	
$gt0_tx +$	Line Coding 8B10B V	
• s_axi_acik irq • s_axi_aresetn tx_aresetn •	64B66B Core Options	_
tx_core_clk tx_sof[3:0] tx_core_reset tx_sof[3:0]	Include FEC	
tx_sysref tx_reset_gt	8B10B Core Options	
tx_reset_done	Include RPAT	
	Include FEC	
	Clocking Options	_
	AXI4-Lite Clock Frequency (MHz) 101.0	
Bought IP license available	OK. Car	ncel

Figure 4-1: Configuration Tab

- **Component Name** The component name is used as the base name of the output files generated for the core. Names must begin with a letter and must be composed from these characters: a through z, 0 through 9 and "_" (underscore).
- **Transmit or Receive** The core can be configured as a transmitter, for connection to DAC devices, or receiver, for connection to ADC devices.
- Lanes per Link(L) The core supports 1 to 8 lanes. For interfaces requiring more than 8 lanes, multiple core must be used.
- Line Coding The core supports 64B66B and 8B10B linecoding modes.
- Include FEC (64B66B only.) Check this option to include the FEC Encoder (TX) or Decoder (RX) in the core. Including the FEC core will increase the resources required by the core.
- **AXI4-Lite Clock Frequency** The frequency of the clock connected to the AXI4-Lite Management Interface.
- **Include RPAT** (8B10B Transmitter only.) Check this option to include the logic required to generate a Modified Random test pattern. This option will increase the resources required by the core.

• **Include JSPAT** – (8B10B Transmitter only.) Check this option to include the logic required to generate a Scrambled Jitter test pattern. This option will increase the resources required by the core.

JESD204 PHY Configuration Tab

A	Re-cu	istomize IP		
JESD204C (3.0)			4	•
🕑 Documentation 🛛 🗁 IP Location				
Show disabled ports	Component Name jesd204c_3			
	Configuration JESD204 PHY	Configuration		
	The JESD204C does not include a	a JESD204 PHY. A JESD:	204 PHY can be generated from the IP catalogue and wired up to the JESD204C IP	
	Transceiver Parameters			
	Transceiver Type	GTYE4 v	·	
+ s_axis_tx	Line Rate (Gbps)	8.00	8	
gt0_tx + gt1_tx +	Reference Clock (MHz)	200 🗸	·	
s_axi_aclk irq	PLL Type	CPLL ~	/	
tx_core_clk	DRP Clock Frequency (MHz)	121.2121212	3	
tx_sof[3:0] =	Valid Range of values for DR	P Clock Frequency. [10	.0121.2121212]	
tx_somf[3:0] =				
tx_sync tx_reset_gt				
 tx_reset_done 				

Figure 4-2: JESD204 PHY Tab

• **Transceiver Parameters** – For any selected Line Rate and PLL Type, valid Reference Clock frequencies can be selected from a drop-down list. A free-running DRP clock must be supplied, and the frequency (within the displayed valid range) must be entered in the DRP Clock Frequency box.

User Parameters

Table 4-1 shows the relationship between the GUI fields in the Vivado IDE and the User Parameters (which can be viewed in the Tcl console).

Table 4-1: Vivado IDE Parameter to User Parameter Relationship

Vivado IDE Parameter/Value ⁽¹⁾	User Parameter/Value ⁽¹⁾	Default Value
Transmit or Receive	C_NODE_IS_TRANSMIT	0 (= Transmit)
Lanes per Link	C_LANES	2
AXI4-Lite Clock Frequency	AXICLK_FREQ	100.00
Transceiver Parameters		
Line Rate ⁽²⁾	GT_Line_Rate	8.0
Ref Clock Frequency ⁽²⁾	GT_REFCLK_FREQ	200.0
DRP Clock Frequency	DRPCLK_FREQ	200.0
PLL Type	C_PLL_SELECTION	0 (=CPLL)
Line Coding	C_ENCODING	1 (1 = 64B66B. 0 = 8B10B)
Include FEC	C_USE_FEC	0 (= not included)

Vivado IDE Parameter/Value ⁽¹⁾	User Parameter/Value ⁽¹⁾	Default Value	
Include RPAT	C_USE_RPAT	0 (= not included)	
Include JSPAT	C_USE_JSPAT	0 (= not included)	

Table 4-1:	Vivado IDE	Parameter t	o User	Parameter	Relationship) ('Cont'd)

Notes:

1. Parameter values are listed in the table where the Vivado IDE parameter value differs from the user parameter value. Such values are shown in this table as indented below the associated parameter.

2. Varies depending on device.

Output Generation

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 2].

Transceiver Sharing

The JESD204_PHY core (see *JESD204 PHY LogiCORE IP Product Guide* (PG198) [Ref 11]) provides a simple way to share transceivers between JESD204/JESD204C cores. Any number of JESD204_PHY cores can be connected to any number of JESD204/JESD204C cores to cater for any combination of ADCs and DACs using different line rates, lane counts, linecoding, and versions of the JESD204 standard.

An example of a two lane 64B66B TX and two lane 8B10B RX sharing a JESD204 PHY is shown in Figure 4-3. The transmitter and the receiver are configured for different line rates. Separate refclk inputs are provided for each PLL and separate core clocks are provided for TX and RX to support subclass 1 (see Figure 3-3).

Figure 4-3: Transceiver Sharing

Configuring the JESD204 PHY in IPI

The example design that can be generated for the JESD204C core in Vivado (see Chapter 5) delivers a JESD204 PHY core with the settings used in the JESD204C GUI. When configuring a JESD204 PHY core for use with a JESD204C core, the following values must be set:

- The transceiver type must be set to GTYE3 or GTYE4.
- The JESD204 Version must be set to JESD204C.

As highlighted in Figure 4-4, Line Coding must be selected (64B66B or 8B10B).

A	Re-c	ustomize IP			
JESD204 PHY (4.0)					2
1 Documentation 🛛 🗁 IP Location					
Show disabled ports	Component Name jesd204_phy				
	Configuration Shared Logic				
	Configuration Pre-set		Line Rate Switching		0
	Physical Resources		Line Rate Capabilities		Ŭ
	Lanes per Link(L)	2 ↔ GTYE4 ↔	Static Line Rate	 Dynamic Line Rate 	
	Starting Transceiver Loc	ation X0Y4 ~	Minimum Line Rate (Gbp	s) 6.25	8
	Transceiver Parameters		Maximum Line Rate (Gb;	6.25 (
- cpll_refclk gt0_rx + - qpll0_refclk gt1_rx +	Initial Transceiver settings. T	hese settings can be dyn:	amically changed using the AXI4-L	lite Interface.	
qpll1_refclk common0_qpll0_out +	IESD204 Version	IESD204C	IESD204 Version		
tx_reset_gt txp_out[1:0] =	Line Coding	64B66B ~	Line Coding	64B66B ~	
- tx_sys_reset txoutclk -	Line Rate (Gbps)	6.25 🛞	Line Rate (Gbps)	6.25	
rx_sys_reset rxoutclk	Reference Clock (MHz)	156.25 🗸	Reference Clock (MHz)	156.25 🗸	
rxn_in[1:0] gt_powergood -	PLL Type	CPLL 🗸	PLL Type	QPLLO 🗸	
tx_core_clk rx_reset_done rx_core_clk	Master Channel	1 ~	Master Channel	1 ~	
s_axi_aclk			Advanced		۲
• s_axi_aresetn	DRP Clock Frequency (MHz)	94.6969697			
	Valid frequency range: [10.0	94.6969697]			
	Optional Settings				

Figure 4-4: JESD204 PHY GUI

It is possible to share a JESD204 PHY between instances of JESD204B and JESD204C cores because the JESD204 Version parameter is set independently for each direction (TX and RX). The value must be set to JESD204C to connect to a JESD204C core, and JESD204B for a JESD204 core. Both JESD204 and JESD204C cores support 8B10B linecoding, however the interfaces to the JESD204_PHY are not identical. So the correct version of the standard must be chosen based on which core you are intending to interface with.

Constraining the Core

This section describes how to constrain a design containing the JESD204C core. This is accomplished by using the XDC delivered with the core at generation time. An additional XDC file is generated with the IP example design; only the core XDC file should be used in user designs.

Required Constraints

This section defines the constraint requirements for the core. Constraints are provided in several XDC files which are delivered with the core and the example design to give a starting point for constraints for the user design.

There are four XDC constraint files associated with this core:

- <corename>_example_design.xdc
- <corename>_ooc.xdc
- <corename>.xdc
- <corename>_clocks.xdc

The first is used only by the example design; the second file is used for Out Of Context support where this core can be synthesized without any wrappers; the third file is the main XDC file for this core. The last file defines constraints which depend on clock period definition, either those defined by other XDC files or those generated automatically by the Xilinx tools, and this XDC file is marked for automatic late processing within the Vivado design tools to ensure that definitions exist.

Device, Package, and Speed Grade Selections

See the appropriate device data sheet listed in References to determine the maximum line rate supported. Not all devices, packages and speed grades can operate at the maximum line rate supported by the IP.

Clock Frequencies

The reference clock and core clock frequency constraints vary depending on the selected line rate and reference clock when generating the core. See the generated XDC for details.

Clock Domains

There are also several paths where clock domains are crossed. These include the management interface. See the generated XDC file for details.

Clock Management

Reference clock and core clock resources require location constraints appropriate to your top-level design.

Clock Placement

Reference clock input should be given location constraints appropriate to your top-level design and to the placement of the transceivers.

Core clock input (if required) should be given location constraints appropriate to your top-level design.

Banking

All ports should be given location constraints appropriate to your top-level design within banking limits.

Transceiver Placement

Transceivers should be given location constraints appropriate to your design.

I/O Standard and Placement

All ports should be given I/O standard and location constraints appropriate to your top-level design.

Simulation

For comprehensive information about Vivado simulation components, as well as information about using supported third party tools, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 4].

IMPORTANT: For cores targeting 7 series or Zynq-7000 AP SoC devices, UNIFAST libraries are not supported. Xilinx IP is tested and qualified with UNISIM libraries only.

Synthesis and Implementation

For details about synthesis and implementation, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 2].

Chapter 5

Example Design

The JESD204C IP can be generated as a TX or RX configuration with either 64B66B or 8B10B linecoding. All selections include a lightweight test harness to enable familiarization with the design and signal interface. To create the example design:

- 1. In Vivado[®], create a new empty project.
- 2. Select the FPGA part that you wish to use.
- 3. Using the Vivado IP catalog, select the **JESD204C** IP core and configure exactly as required.
- 4. Right-click the block under Design Sources.
- 5. Select **Open IP Example Design**, from the drop-down menu as shown in Figure 5-1. This opens a new Vivado project containing the complete RX or TX design example.

Figure 5-1: **Opening the Example Design**

Figure 5-2 shows an overview of the example design created for both a JESD204C TX and an JESD204C RX Core. The design contains a full transmit and receive path example sharing a JESD204_PHY core. The design will generate the JESD204C TX or RX core as configured in the IP GUI. A matching JESD204C TX or RX core will also be generated with settings to complement.

The design is composed of the following main blocks:

- An AXI4-Lite interconnect block to provide multiplexed access to the TX, RX and PHY AXI4-Lite interfaces.
- A simple pattern generator that generates analog sample data and control bits.
- An example mapper that demonstrates mapping the analog sample data and control words into the JESD204C transport layer on the AXI4-Streaming interface to drive the TX core.
- A JESD204C TX core (configuration set in the JESD204C core IP GUI).
- A JESD204_PHY core (configuration set in the JESD204C core GUI PHY Configuration Tab).
- A JESD204C RX core (configuration set in the JESD204C core IP GUI).
- An example de-mapper that demonstrates the AXI4-Streaming interface and the JESD204C transport layer back to analog samples and control words.
- A simple pattern checker that checks the received sample and control words for correctness.

The example design is intended to be used as a starting point for your custom design.

Note: The IO clock buffers necessary for the example design to function as a complete FPGA design are instantiated in the top level wrapper that encapsulates this example design.

Chapter 6

Test Bench

The example design supplied with the JESD204C core provides a complete simulation environment including a demonstration test bench that allows you to simulate the core and view the inputs and outputs using the Vivado® Design Suite.

The test bench instantiates the example design described in Chapter 5, and provides the necessary stimulus to show the example design functioning. The test bench can be run at all stages of the design process from behavioral simulation of the RTL code through full post-implementation timing simulation.

Figure 6-1 shows an overview of the test bench delivered with the example design.

Figure 6-1:

Appendix A

Verification, Compliance, and Interoperability

This appendix is not applicable.

www.xilinx.com

Appendix B

Upgrading

Upgrading from v2.0 to v3.0

No action is required.

Upgrading from v1.0 to v2.0

New ports have been added to the JESD204 PHY interface for TX and RX as follows:

- gtN_txcharisk[3:0]
- gtN_rxcharisk[3:0]
- gtN_rxdisperr[3:0]
- gtN_rxnotintable[3:0]

These ports must be wired to the corresponding ports on the JESD204 PHY core.

Appendix C

Debugging

This appendix includes details about resources available on the Xilinx Support website and debugging tools.

TIP: If the IP generation halts with an error, there might be a license issue. See License Checkers in Chapter 1 for more details.

Finding Help on Xilinx.com

To help in the design and debug process when using the JESD204C, the Xilinx Support web page contains key resources such as product documentation, release notes, answer records, information about known issues, and links for obtaining further product support.

Documentation

This product guide is the main document associated with the JESD204C. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Downloads page. For more information about this tool and the features available, open the online help after installation.

Answer Records

Answer Records include information about commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most accurate information available.

Answer Records for this core can be located by using the Search Support box on the main Xilinx support web page. To maximize your search results, use proper keywords such as:

- Product name
- Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the JESD204C Core: AR: 68804

Technical Support

Xilinx provides technical support at the Xilinx Support web page for this LogiCORE[™] IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support if you do any of the following:

- Implement the solution in devices that are not defined in the documentation.
- Customize the solution beyond that allowed in the product documentation.
- Change any section of the design labeled DO NOT MODIFY.

To contact Xilinx Technical Support, navigate to the Xilinx Support web page.

Debug Tools

There are many tools available to address JESD204C design issues. It is important to know which tools are useful for debugging various situations.

Vivado Design Suite Debug Feature

The Vivado® Design Suite debug feature inserts logic analyzer and virtual I/O cores directly into your design. The debug feature also allow you to set trigger conditions to capture application and integrated block port signals in hardware. Captured signals can then be analyzed. This feature in the Vivado IDE is used for logic debugging and validation of a design running in Xilinx devices.

The Vivado logic analyzer is used with the logic debug LogiCORE IP cores, including:

- ILA 2.0 (and later versions)
- VIO 2.0 (and later versions)

See the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 6].

Reference Boards

The Xilinx VCU118 evaluation board boards support the JESD204C. This board can be used to prototype designs and establish that the core can communicate with the system.

www.xilinx.com

Simulation Debug

The simulation debug flow for QuestaSim is illustrated in Figure C-1. A similar approach can be used with other simulators.

Figure C-1: QuestaSim Debug Flow Diagram

Hardware Debug

Hardware issues can range from link bring-up to problems seen after hours of testing. This section provides debug steps for common issues. The debug feature is a valuable resource to use in hardware debug. The signal names mentioned in the following individual sections can be probed using the debug feature for debugging the specific problems.

General Checks

- Ensure that the core is correctly wired up and that the lane based signals are wired to the correct location on the JESD204_PHY.
- Ensure that all the timing constraints for the core were met during implementation.
- Ensure that all clock sources are clean and in particular that the transceiver reference clocks meet the transceiver requirements from the appropriate FPGA Data Sheet.
- Ensure all clock sources are stable before deasserting the external reset signal to the core.
- Ensure that all transceiver PLLs have obtained lock by monitoring the QPLLLOCK_OUT and/or CPLLLOCK_OUT port either using the debug feature or by routing the signals to a spare pin.

Issues Obtaining Lane Synchronization

• Ensure that the AXI4-Lite registers have been programmed with the correct value for multi-blocks per extended multi-block.

Interface Debug

AXI4-Lite Interfaces

Read from a register that does not have all 0s as a default to verify that the interface is functional. Output s_axi_arready asserts when the read address is valid, and output s_axi_rvalid asserts when the read data/response is valid. If the interface is unresponsive, ensure that the following conditions are met:

- The S_AXI_ACLK and ACLK inputs are connected and toggling.
- The interface is not being held in reset, and S_AXI_ARESET is an active-Low reset.
- The interface is enabled, and s_axi_aclken is active-High (if used).
- The main core clocks are toggling and that the enables are also asserted.

www.xilinx.com

• If the simulation has been run, verify in simulation and/or the Vivado Design Suite debug feature capture that the waveform is correct for accessing the AXI4-Lite interface.

AXI4-Stream Interfaces

If data is not being transmitted or received, check the following conditions:

- If transmit tready is stuck Low following the tvalid input being asserted, the transmit core cannot send data.
- If the receive tvalid is stuck Low following the tready input being asserted, the core is not receiving data.
- Check that the core_clk signals are connected to the TX core AXI4-Stream data source or the RX core AXI4-Stream data sink.
- Check that the AXI4-Stream waveforms are being followed (see Vivado AXI Reference Guide [Ref 10]).
- Check core configuration.

Appendix D

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx Support web page.

Documentation Navigator and Design Hubs

Xilinx[®] Documentation Navigator provides access to Xilinx documents, videos, and support resources, which you can filter and search to find information. To open the Xilinx Documentation Navigator (DocNav):

- From the Vivado[®] IDE, select **Help > Documentation and Tutorials**.
- On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
- At the Linux command prompt, enter docnay.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics, which you can use to learn key concepts and address frequently asked questions. To access the Design Hubs:

- In the Xilinx Documentation Navigator, click the **Design Hubs View** tab.
- On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page on the Xilinx website.

References

These documents provide supplemental material useful with this product guide:

- 1. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)
- 2. Vivado Design Suite User Guide: Designing with IP (UG896)
- 3. Vivado Design Suite User Guide: Getting Started (UG910)
- 4. Vivado Design Suite User Guide: Logic Simulation (UG900)
- 5. ISE to Vivado Design Suite Migration Guide (UG911)
- 6. Vivado Design Suite User Guide: Programming and Debugging (UG908)
- 7. Vivado Design Suite User Guide: Implementation (UG904)
- 8. AXI Interconnect LogiCORE IP Product Guide (PG059)
- 9. JESD204C Standard www.jedec.org
- 10. Vivado AXI Reference Guide (UG1037)
- 11. JESD204 PHY LogiCORE IP Product Guide (PG198)

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
04/04/2018	3.0	Added 8B10B linecoding mode.
10/4/2017	2.0	 Added ports: gtN_txcharisk[3:0], gtN_rxcharisk[3:0], gtN_rxdisperr[3:0], gtN_rxnotintable[3:0] Removed reference to individual parts of JESD204C specification.
06/07/2017	1.0	Added GT_POWERGOOD from JESD204_PHY to clocking example description and figure 3-2.
04/05/2017	1.0	Initial Xilinx Release.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT LIABILITY.

© Copyright 2012–2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, ARM1176JZ-S, CoreSight, Cortex, PrimeCell, and MPCore are trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners.