
XAPP737 (v1.0) June 12, 2007 www.xilinx.com 1

© 2007 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. PowerPC is a
trademark of IBM Inc. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may require
for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or
representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary Often in communication systems, data must be moved between different protocols. This
application note describes a reference design used to bridge one four-channel Xilinx SPI-4.2
(PL4) core (v8.1) to four single-channel SPI-3 (PL3) Link Layer cores (v4.1), implemented in a
single Virtex™-4 device.

Software and IP Requirements

The software and IP used in the design are listed below:

• ISE™ 8.2.03i IP update1

• Xilinx SPI-3 Link Layer cores (v4.1)

• Xilinx SPI-4.2 core (v8.1)

Introduction System Packet Interface, Level 3, (SPI-3) provides a link-layer interface for transferring packets
at the OC48 data rate (2488.32 Mb/s) while System Packet Interface, Level 4 Phase 2, (SPI-
4.2) provides a link-layer interface for transferring packets at the OC192 data rate (9953.28
Mb/s). In many communication applications, a bridge between two systems supporting different
interfaces (for example, SPI-3 and SPI-4.2) is required. This application note presents a
reference design bridging one, four-channel Xilinx SPI-4.2 (PL4) core (v8.1) to four, single-
channel SPI-3 (also known as packet-over-SONET/SDH physical layer or POS-PHY™ Level-3)
Link Layer cores (v4.1) in a Virtex-4 device.

Note: Full versions of the SPI-4.2 and SPI-3 Link-Layer cores used with this design are available for a
licensing fee. Full-system hardware evaluation licenses are available at no additional cost. For more
information regarding these and other cores, please contact a Xilinx distributor.

Design
Overview

The reference design provides a bridge between a single, four-channel SPI-4.2 core and four,
single-channel SPI-3 cores. All necessary functionality to transfer packets between the two
sets of interfaces and appropriate flow control information is provided in this design. The
reference design is based on the Xilinx SPI-4.2 (PL4) v8.1 and the POS-PHY Level-3 (SPI-3)
Link Layer cores v4.1. Also included with the reference design files are the .xco files used to
create the final design. Generating the reference design use options other than those
described in this application note can induce errors in the resulting design.

Note: The source code provided is for the bridging function only (indicated as Bridge Reference Design
in Figure 1). The other portions of the design must be purchased from Xilinx. An evaluation license is also
available.

The design is divided into two distinct sections. The section “SPI-4.2 Core to Quad SPI-3
Cores” describes passing packets from the single SPI-4.2 sink core to the four SPI-3 transmit
cores. The other section, “Four SPI-3 Cores to One SPI-4.2 Core,” describes passing packets
from the four SPI-3 receive cores to the single SPI-4.2 source core.

Application Note: Virtex-4 FPGAs

XAPP737 (v1.0) June 12, 2007

SPI-4.2 to Quad SPI-3 Bridge in
Virtex-4 FPGAs
Author: Zhe Xia

R

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Design Overview

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 2

R

Figure 1: SPI-4.2 to SPI-3 Bridge Top-Level Block Diagram

XC4VLX40FF1148-10

FIFO

Receive

FIFO

Transmit

SPI-3 Core

FIFO

Receive

FIFO

Transmit

SPI-3 Core

FIFO

Receive

FIFO

Transmit

SPI-3 Core

FIFO

Receive

FIFO

Transmit

SPI-3 Core

Bridge Reference Design

SPI-3 to SPI-4.2 Bridge

SPI-4.2 to SPI-3 Bridge

Source

FIFO

SPI-4.2 Core

Sink

FIFO

X737_01_032807

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/Status

Data

Control/
Status

Data

Control/
Status

Data

Control/
Status

Data

Control/
Status

Data

Control/Status

Data

Control/Status

http://www.xilinx.com

SPI-4.2 Core to Quad SPI-3 Cores

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 3

R

SPI-4.2 Core to
Quad SPI-3
Cores

At the top level, the SPI-4.2 sink core, four SPI-3 transmit cores, and spi4_to_spi3_core (SPI-4.2-
to-SPI-3 Bridge in Figure 1) are instantiated. The spi4_to_spi3_core module contains the
bridging logic for passing packets from the single SPI-4.2 sink core to four SPI-3 transmit cores
(Figure 2).

Table 1 shows the major top signals in spi4_to_spi3_core (the SPI-4.2 and SPI-3 core interface
signals are not listed).

Figure 2: SPI-4.2 Sink Core to SPI-3 Transmit Core Path Block Diagram

spi_4_to_spi3_top

X737_02_012007

spi4_to_spi3_core

sp
i4

_t
o_

sp
i3

_r
ea

d

sp
i4

_t
o_

sp
i3

_w
rit

e

spi4_to_spi3_
burst_storage

FIFO
0

FIFO
1

FIFO
2

FIFO
3

Address
Decoding

SPI-3
TX Core

Instantiation
0

SPI-3
TX Core

Instantiation
1

SPI-3
TX Core

Instantiation
2

SPI-3
TX Core

Instantiation
3

S
P

I-
4.

2
S

in
k

C
or

e
In

st
an

tia
tio

n

spi4_to_spi3_
flow_control

Data/
In-band

Addressing

Status

Data

SPI-4.2
FIFO
Empty

SPI-4.2
FIFO

Almost
Empty

Address

Status

Data

Address

WE3

WE2

WE1

WE0
Data0

Data1

Data2

Data3

Data0

Status0

Data1

Status1

Data2

Status2

Data3

Status3

Data

Status

Data

Status

Data

Status

Data

Status
FIFO Status

•

•

•

•

Table 1: Major Signals in spi4_to_spi3_core

Signal Name Description

SPI4_Addr[7:0] Sink FIFO Channel Address. Same functionality as Snk_FFAddr[7:0]
in SPI-4 sink core.

SPI4_Data[63:0] Sink FIFO Data Out. Same functionality as FFData[63:0]
in SPI-4 sink core.

SPI4_Mod[2:0] Sink FIFO Modulo. Same functionality as FFMod[2:0] in SPI-4 sink core

SPI4_SOP Sink FIFO Start of Packet. Same functionality as SnkFFSOP
in SPI-4 sink core.

SPI4_EOP Sink FIFO End of Packet. Same functionality as SnkFFEOP
in SPI-4 sink core.

SPI4_Err Sink FIFO Error. Same functionality as SnkFFErr in SPI-4 sink core

SPI4_Valid Sink FIFO Read Valid. Same functionality as SnkFFValid
in SPI-4 sink core.

SPI3_0_BrstData[69:0] Data read from burst storage FIFO 0. Corresponding to SPI-3 Core 0.

SPI3_1_BrstData[69:0] Data read from burst storage FIFO 1. Corresponding to SPI-3 Core 1.

SPI3_2_BrstData[69:0] Data read from burst storage FIFO 2. Corresponding to SPI-3 Core 2.

SPI3_3_BrstData[69:0] Data read from burst storage FIFO 3. Corresponding to SPI-3 Core 3.

http://www.xilinx.com

SPI-4.2 Core to Quad SPI-3 Cores

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 4

R

The SPI-4.2 to SPI-3 core consists of four submodules: the read module, the burst storage
module, the write module, and the flow control module. The hierarchy of the SPI-4.2 core to four
SPI-3 cores design is illustrated in Figure 3.

Read Module

The read module reads packet data/address information from the SPI-4.2 sink core along with
packet control signals such as start of packet (SOP), end of packet (EOP), error (Err), and
modulo (Mod). The data read from the SPI-4.2 core is 64 bits wide. The address information
indicating channel information is 2 bits wide.

Data is not read from the SPI-4.2 core if SnkFFEmpty_n signal from SPI-4.2 sink core is
asserted, indicating that the SPI-4.2 sink core's internal FIFO is empty. Otherwise, data is read
from the core. When data is read from the SPI-4.2 sink core and written into the FIFOs in burst-
storage module, the full flags of the FIFOs are not monitored by the read module. Once the
FIFO is half full, the flow control module sends a halt-data-transfer (a status of satisfied)

SPI3_0_BrstRdEn Read enable for burst storage FIFO 0.

SPI3_1_BrstRdEn Read enable for burst storage FIFO 1.

SPI3_2_BrstRdEn Read enable for burst storage FIFO 2.

SPI3_3_BrstRdEn Read enable for burst storage FIFO 3.

SPI3_0_Brst_Empty Empty flag for burst storage FIFO 0.

SPI3_1_Brst_Empty Empty flag for burst storage FIFO 1.

SPI3_2_Brst_Empty Empty flag for burst storage FIFO 2.

SPI3_3_Brst_Empty Empty flag for burst storage FIFO 3.

SPI3_0_Brst_HalfFull Indicates burst storage FIFO 0 is half full.

SPI3_1_Brst_HalfFull Indicates burst storage FIFO 1 is half full.

SPI3_2_Brst_HalfFull Indicates burst storage FIFO 2 is half full.

SPI3_3_Brst_HalfFull Indicates burst storage FIFO 3 is half full.

Figure 3: SPI-4.2 to SPI-3 Bridge Virtex-4 Design Hierarchy

Table 1: Major Signals in spi4_to_spi3_core (Continued)

Signal Name Description

spi4_to_spi3_top

pl3_tx_top (Four Instantiations of SPI-3 TX Module)

pl4_snk_top (SPI-4.2 Sink Module)

spi4_to_spi3_core (SPI-4.2 to SPI-3 Bridge Module)

spi4_to_spi3_read (SPI-4.2 Bridge Read Module)

spi4_to_spi3_flow_control (SPI-4.2 Bridge Flow Control Module)

spi4_to_spi3_write (Bridge SPI-3 TX Write Module)

spi4_to_spi3_burst_storage (Burst-Storage Module)

generic_sfifo_512x72 (CORE Generator™ v3.1 FIFO)
X737_03_032807

http://www.xilinx.com

SPI-4.2 Core to Quad SPI-3 Cores

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 5

R

request. Therefore, if the device supplying data to the SPI-4.2 core in the user's system is slow
to respond to a request to halt data transfer, then overflow is possible within the bridge.

Burst-Storage Module

The burst-storage module contains the address decoding logic plus four FIFOs for holding
packet data. Each FIFO holds the data for one SPI-3 transmit core and one SPI-4.2 channel.
The instantiated FIFOs are LogiCORE™ modules created using FIFO Generator v3.1
(provided free with the ISE 8.2i). See “Modifying the Reference Design” for details on modifying
the burst-storage FIFOs.

Data is both read and written to the FIFOs within the burst-storage module as 70-bit data:
64 bits of packet data, SOP, EOP, 3 bits of the Mod signal, plus the Err signal (Table 2). Each
FIFO can hold up to 4 KB of data, corresponding to 512 72-bit words.

In the reference design, address 0 for the SPI-4.2 sink core corresponds to instantiation 0 of the
SPI-3 transmit core, address 1 corresponds to instantiation 1, and so on. The user can modify the
address decode according to the needs of the application (see “Changing Channel Mapping”).
Individual write enable signals are provided to each FIFO submodule after address decode.

Write Module

The write module reads data out of each of the FIFOs in the burst-storage module, writing it to
the corresponding SPI-3 transmit core. Data is read out of each of the FIFOs of the burst-
storage module if the FIFO is not empty (SPI3_Brst_Empty is not active), and the corresponding
SPI-3 transmit core is ready to receive data (SPI_3_DST_RDY of SPI-3 TX core is asserted).
After the packet data is read from the burst-storage FIFO, the data is converted from 64 bits to
32 bits. In addition, the Mod signal must be examined to determine if all of the 64 bits of data are
valid and to determine the correct time to send EOP, SOP, Mod, and Err signals.

The Mod signal is a modulo signal used to indicate valid bytes on the last cycle of a transfer (as
specified by the OIF SPI3-01.0 standard). Table 3 shows Mod signaling versus the valid bits on
the 32-bit data bus.

The Mod signal must also be converted into a 2-bit signal called REM, used in SPI-3 interfacing,
before being sent on. The REM signal on the SPI-3 user interface and Mod signal on the SPI-3
packet interface are not coded identically. The Xilinx LocalLink standard specifies that the
remainder signal indicates the number of valid bytes on the data bus as REM + 1, with the valid
bytes MSB justified. Table 4 shows the REM signaling versus the valid bits on the 32-bit data bus.

Table 2: Signals Mapping of Burst-Storage FIFOs

Reserved Data[63:0] SOP EOP MOD[2:0] ERR

Bit location 71:69 68:6 5 4 3:1 0

Table 3: Example Mod Signaling

Mod[1:0] Data Valid

00 [31:0]

01 [31:8]

10 [31:16]

11 [31:24]

Table 4: Example REM Signaling

REM[1:0] Data Valid

00 [31:24]

01 [31:16]

http://www.xilinx.com

Four SPI-3 Cores to One SPI-4.2 Core

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 6

R

Flow Control Module

The flow control module controls the status sent back to the SPI-4.2 sink core for transmission
on the SPI-4.2 bus. The status for a particular SPI-4.2 channel is in satisfied status when the
corresponding SPI-3 transmit core's FIFO is almost full or the corresponding burst storage
FIFO is half full (the alternate status is starving). The half-full level was chosen for the burst-
storage FIFO module to increase the amount of latency that can be tolerated before the device
supplying data to the SPI-4.2 sink core must respond to the satisfied status.

Four SPI-3
Cores to One
SPI-4.2 Core

At the top-level, one spi3_to_spi4_core, four SPI-3 RX cores, and one SPI-4.2 source cores are
instantiated (Figure 4), handling SPI-3 traffic from the four single-channel SPI-3 cores and
transferring it to a single four-channel SPI-4.2 source core. Flow control received from the
SPI-4.2 core determines which channel is active and how much data is transferred for each
channel. This block also provides 4 KB of intermediate buffering for each channel in the bridge.

All the bridge functionality is performed by the spi3_to_spi4_core block with four sub blocks:

• spi3_to_spi4_read

• spi3_to_spi4_burst_storage

• spi3_to_spi4_arbiter

• spi3_to_spi4_write

10 [31:8]

11 [31:0]

Table 4: Example REM Signaling

REM[1:0] Data Valid

Figure 4: SPI-3 Receive Core to SPI-4.2 Source Core Path Block Diagram

spi3_to_spi4_top

X737_04_012007

spi3_to_spi4_core

sp
i3

_t
o_

sp
i4

_w
rit

e

spi3_to_spi4_
burst_storage

FIFO
0

FIFO
1

FIFO
2

FIFO
3

SPI-3
RX Core

Instantiation
0

SPI-3
RX Core

Instantiation
1

SPI-3
RX Core

Instantiation
2

SPI-3
RX Core

Instantiation
3

S
P

I-
4.

2
S

ou
rc

e
C

or
e

In
st

an
tia

tio
n

spi3_to_spi4_
arbiter

Data/
In-band

Addressing

Status

Data

SPI-4.2
FIFO

Almost
Full

Address

Status

RD3

RD2

RD1

RD0
Data0

Data1

Data2

Data3

Data0

RdEn0

Data1

RdEn1

Data2

RdEn2

Data3

RdEn3

Data

Status

Data

Status

Data

Status

Data

Status

FIFO Status

spi3_
to_spi4_
read0

spi3_
to_spi4_
read1

spi3_
to_spi4_
read2

spi3_
to_spi4_
read3

Data0

Data1

Data2

Data3

http://www.xilinx.com

Four SPI-3 Cores to One SPI-4.2 Core

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 7

R

The hierarchy of the four SPI-3 cores to one SPI-4.2 core path portion of the design is
illustrated in Figure 5.

Read Module

Spi3_to_spi4_read blocks are used to read data from four SPI-3 RX cores. These blocks also
write data into FIFOs of the burst-storage modules. If SPI-3 RX side is ready (indicated by
SPI3_SRC_RDY of SPI-3 RX side), the read module reads from the SPI-3 FIFO and transfers to
the burst-storage FIFO, provided the burst-storage FIFOs is not full. The end application could
stop the transaction when almost_full flags of the FIFOs are asserted, allowing for more latency.

Burst-Storage Module

The burst-storage modules provide intermediate buffering of packet data for each SPI-3 core.
There are four instantiations of this module, one for each SPI-3 RX core. These burst storage
modules have 4 KB of capacity and store all the packet information, including SOP, EOP, Err,
Mod, and packet data from the SPI-3 RX core. The burst-storage module merges two 32-bit
SPI-3 data words into one 64-bit FIFO word and converts the 2-bit SPI-3 REM signals to 3-bit
SPI-4.2 Mod signals, resulting in 72-bit data (Table 5).

Note: The EOP signal is triplicated to decrease fanout and improve timing.

On the SPI-4.2 bus, the transfer begins with a payload control word indicating the start of packet
(SOP), and ends with other payload control words indicating the end of packet (EOP), indicated
on the user interface of the source core by the signals SrcFFSOP, SrcFFEOP, and SrcFFERRs.

The SPI-4.2 Mod signal is a modulo signal indicating which bytes on the 64-bit SPI-4.2 data bus
are valid when the SrcFFEOP or SrcFFErr signal is asserted. When SrcFFEOP is deasserted,
the SPI-4.2 Mod signal should always be zero.

Figure 5: SPI-3 to SPI-4.2 Bridge Hierarchy

Table 5: Signals Mapping of Burst-Storage FIFOs

EOP EOP EOP SOP ERR MOD[2:0] DATA1[31:0] DATA2[31:0]

Bit location 71 70 69 68 67 66:64 63:32 31:0

spi3_to_spi4_top

pl3_rx_top (Four Instantiations of SPI-3 RX Module)

pl4_src_top (SPI-4.2 Source Module)

spi3_to_spi4_core (SPI-3 to SPI-4.2 Bridge Module)

spi3_to_spi4_read (Four Instantiations of SPI-3 Bridge Read Module)

spi3_to_spi4_arbiter (Bridge Arbiter Module)

spi3_to_spi4_write (Bridge SPI-4.2 Source Write Module)

spi3_to_spi4_burst_storage (Burst-Storage Module)

generic_sfifo_512x72 (CORE Generator v3.1 FIFO)
X737_05_032807

http://www.xilinx.com

Four SPI-3 Cores to One SPI-4.2 Core

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 8

R

Table 6 shows the mapping between the packet status signals on the user interface and
SPI-4.2 control words in the reference design ([Ref 1]).

The burst-storage module also provides FIFO status information, indicating whether the FIFO
is full or almost empty. The burst-storage FIFO almost-empty threshold is defined in the
package file spi_pkg.v/vhd and must be greater than the MaxBurst1 and MaxBurst2
parameters (defined in “Configuration Parameters”). Finally, the burst-storage module keeps
track of the number of EOPs in the FIFO and is used during arbitration, indicated by PktCntEq0
and PktCntEq1 signals shown in Table 7.

Arbiter Module

The arbiter module spi3_to_spi4_arbiter.v/vhd arbitrates between the four SPI-3
channels to transfer packet data from burst storage to the SPI-4 source FIFO. Each SPI-3
channel is eligible for transfer when it has at least one EOP in its burst FIFO or if its burst-
storage FIFO has more data than almost-empty-threshold words. The arbiter always transfers
a multiple of SPI-4.2 credits (1 credit = 16 bytes) as per the SPI-4.2 specification.

In addition, the data transferred for each channel depends on the status of that channel, as
monitored by the module. Major signals in arbiter module are defined in Table 7.

The arbiter transfers:

• MaxBurst1 credits when starving status (00) is received for a channel.

• MaxBurst2 credits when hungry status (01) is received for a channel, terminating transfer
immediately after EOP is transferred from burst storage to SPI-4.2 source FIFO.

Table 6: SPI-4.2 Mod Signal Mapping to 64-bit User Interface

Control Word Associated Source FIFO Signals
Associated SPI-4.2
Control Word bits

on TDat(1,2)

End of Packet
(EOP, even bytes valid)

SrcFFEOP, SrcFFMOD[2:0]
When TDat[14:13] = 10:
• Mod = 000 if data bits 63–0 have valid data
• Mod = 110 if data bits 63–16 have valid data
• Mod = 100 if data bits 63–32 have valid data
• Mod = 010 if data bits 63–48 have valid data

TDat[14:13] = 10

End of Packet
(EOP, odd bytes valid)

SrcFFEOP, SrcFFMod[2:0]
When TDat[14:13] = 11:
• Mod = 111 if data bits 63–8 have valid data
• Mod = 101 if data bits 63–24 have valid data
• Mod = 011 if data bits 63–40 have valid data
• Mod = 001 if data bits 63–56 have valid data

TDat[14:13] = 11

Notes:
1. Qualified by the TCtl signal.
2. TDat is the 16-bit data bus is used to transmit SPI-4.2 data and control information.

Table 7: Major Signals in Arbiter Module

Signal Name Description

BrstRdEn Burst Storage Read Enable Signal

BrstRdChan Burst storage read channel.

BrstRdEOP Burst storage Read EOP. Indicates if next read burst-storage word has EOP.

BrstRdValid Burst storage Read Valid. Indicates if burst-storage has valid data.

PktCntEq0
0 = no EOPs are present on the FIFO input/output bus.
1 = at least one EOP is present on the FIFO input/output bus.

PktCntEq1
1 = only one EOP is present in the burst FIFO.
0 = either zero EOPs or more than one EOP is present in the burst-storage FIFO.

http://www.xilinx.com

Four SPI-3 Cores to One SPI-4.2 Core

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 9

R

Write Module

The write module (spi3_to_spi4_write) writes the current channel's data (plus SOP, EOP,
Err, Mod and Addr) from its burst-storage FIFO to the SPI-4.2 source FIFO.

Initialization Sequencing

The proper start sequence for SPI-4.2 v8.1 is:

Source

1. Assert source core reset (Reset_n).

2. Assert and release the TDClk DCM Reset (DcmReset_TDClk) and TSClk DCM Reset
(DcmReset_TSClk). This step is applicable only for the master clocking core using global
clock distribution.

3. Wait for the SrcClksRdy signal to be asserted. If the source core is used in slave-clocking
mode and a custom clocking module is used, the module waits until all the clocks
necessary for SPI4.2 Core are ready to use.

4. Release the source core reset (Reset_n).

5. Program the source calendar (handled in the bridge_top.v/vhd module of the
reference design if required).

6. Enable the source core (SrcEn = 1).

Sink
1. Assert sink core Reset (Reset_n) and assert sink IDELAYCTL Reset (SnkIdelayCtlRst) if used.

Note: SnkIdelayCtlRst is not used in the reference design.

2. Assert and release the RDClk DCM Reset (DcmReset_RDClk).

3. Wait for the SnkClksRdy signal to be asserted.

4. Release sink core Reset (Reset_n) and the sink IDELAYCTL Reset (SnkIdelayCtlRst) if used.

5. Program the sink calendar (handled in the bridge_top.v/vhd module of the reference
design if required).

6. Enable the sink core (SnkEn = 1).

The following steps are required in dynamic-alignment mode only:

7. Pulse the PhaseAlignRequest signal High for two times the SnkFFClk period (just long
enough for PhaseAlignRequest to be recognized).

8. Deassert the PhaseAlignRequest signal

9. Monitor SnkDPAFailed and SnkOof. If SnkDPAFailed = 1 and SnkOof = 1, repeat the
PhaseAlignRequest.

If Auto Retry is enabled under dynamic phase alignment (DPA) option, it is not necessary
to repeat the PhaseAlignRequest. The core automatically initiates the alignment again
each time the alignment fails. Auto Retry does not initiate the PhaseAlignRequest when the
core goes out of frame or loses the lock during the normal operation. In this case, the
resynchronization must be manually initiated.

Note: When dynamic-phase-alignment mode is used, the sink core must be receiving a valid
training pattern at the time PhaseAlignRequest is asserted. The source core must be capable of
sending a training pattern at the startup and when sink core out of frame (SnkOof) is asserted by the
sink core. For subsequent alignment, after the High-to-Low transition of PhaseAlignRequest, the
module waits for at least eight SnkFFClk clocks before monitoring SnkDPAFail.

Module spi_clk_startup

Also included at the top level of the reference design is a module called spi_clk_startup.
This module assures that the SPI-4.2 core source and sink modules plus the DCMs within
these modules, as implemented in the reference design, are initialized in the proper sequence.

http://www.xilinx.com

Four SPI-3 Cores to One SPI-4.2 Core

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 10

R

Configuration Parameters

Table 8 shows the bridge configuration parameters defined in the spi_pkg.v/vhd file.

Synthesis and Implementation

This reference design has all the required VHDL and Verilog files for the bridge logic between
four SPI-3 cores and one SPI-4.2 core. Before implementing the reference design, the user
must either purchase the full version of the SPI-4.2 and SPI-3 cores from Xilinx, or license the
full-system hardware evaluation versions at no additional cost. The netlist files and simulation
models of the SPI-4.2 and SPI-3 cores are required for implementation and verification of this
bridge.

Within the reference design directory, there are four sub-directories: the hdl/ directory, the
synth/ directory, the implement/ directory and the simulation/ directory. The hdl/
directory provides all Verilog/VHDL files for the bridge design (excluding the SPI-3 and SPI-4.2
cores). The synth/ directory provides the synthesis related files. The implement/ directory
provides the implementation related files. The test/ directory provides the functional
simulation related files.

Note: The synthesis and implementation tool used in the reference design is ISE 8.2.03.i, update 1.

Steps to Synthesize and Implement the Bridge Design.

1. Generate the SPI-4.2 and SPI-3 cores using a valid license.

2. Copy the following netlist files and place them in the \implement\ngc\verilog or the
\implement\ngc\vhdl directories:

pl4_v8_1_pl4_snk_top.ngc
pl4_v8_1_pl4_src_top.ngc
spi3_link_v4_1_spi3_link_rx.ngc
spi3_link_v4_1_spi3_link_tx.ngc

3. Run run_xst.bat in synth\verilog or synth\vhdl directory to synthesize the
design using XST 8.2.03.

4. Run run_vhd or run_verilog in \implement directory to implement the design with
ISE 8.2.03.

Table 8: Virtex-4 SPI-4.2 to SPI-3 Bridge Configuration Parameters

Configuration
Signal Description and Range Range Default

Value

MaxBurst1

MaxBurst1 for Starving Channels. When
a SPI4.2 channel receives starving status
(status = 00), it is able to accept a burst
length of MaxBurst1 blocks. SPI3-to-SPI4
bridge transfers MaxBurst1 SPI4.2 credits
(1 credit = 16 bytes) to the starving channel.

1 to 255
MaxBurst1 < (SPI3_to_SPI4_AEThres parameter)/2

8

MaxBurst2

MaxBurst2 for Hungry Channels. When a
SPI4.2 channel receives hungry status
(status = 01), it is able to accept a burst
length of MaxBurst2 blocks. SPI3-to-SPI4
bridge transfers MaxBurst2 SPI4.2 credits
(1 credit = 16 bytes) to the hungry channel.

1 to 254
MaxBurst2 < (SPI3_to_SPI4_AEThres parameter)/2

4

SPI3-to-
SPI4_AEThresh

SPI3-to-SPI4 Burst Storage Almost
Empty Threshold. This parameter
specifies the number of FIFO words (64 bit)
that must be present in the burst-storage
FIFO for a given channel before the FIFO
almost-empty signal is asserted. This value
must be greater than 2 × MaxBurst1.

4 to 504 255

http://www.xilinx.com

Testbench and Simulation

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 11

R

Testbench and
Simulation

The demonstration test suite (Figure 7) consists of three files:

master_clocks.v/vhd
spi3_emulator_phy.v/vhd
spi4_to_4spi3_tb.v/vhd

The top-level file of the testbench is spi4_to_4spi3_tb.v/vhd (Figure 6). In this file, the
two other components of the test suite and the bidirectional bridge design under test
(bridge_top.v/vhd) are connected. The sink side and source side of SPI-4.2 interface are
connected in a loopback manner to allow data to flow through both directions of the bridge.
Four SPI-3 PHY emulators (spi3_emulator_phy.v/vhd) are instantiated and connected to
the SPI-3 RX and TX interfaces of the bridge. Initially, the emulators and the bridge design are
held in reset. After reset is deasserted, data is allowed to flow from the SPI-3 emulators through
the SPI-3 to SPI-4 core. As the SPI-4.2 interface is in loopback, the data passed through the
SPI-3-to-SPI-4 core passes back through the SPI-4-to-SPI-3 bridge to the SPI-3 emulators.

The file master_clocks.v/vhd generates the external clocks necessary to drive the bridge
design and the emulators. Four clocks are required:

• One for the SPI-3 RX interfaces.

• One for the SPI-3 TX interfaces.

• Two for the SPI-4.2 interfaces (one is the SPI-4.2 receive data clock and the other is the
200 MHz reference clock used in Virtex-4 SPI-4.2 design).

The spi3_emulator_phy.v/vhd file provides a simplified behavioral simulation model of a
SPI-3 PHY. The model is configured as a single-channel PHY device transmitting sets of eight
DWORD (nominally 32-byte) packets to an SPI-3 port. The SOP and EOP signals are driven as
expected to send an eight DWORD packet. During an EOP condition, the values that the
Modulos (Mod) is driven with is constantly varied throughout the simulation to create packet
lengths varying between 29 and 32 bytes. In addition, some packets are sent with the Err signal
asserted to indicate a packet errors. The emulator uses a generic value to seed the starting
data value for the packets to be sent to the link layer SPI-3 port, thus allowing different
instances of the emulator to send packets containing different data (but data sent in each
packet is the same).

For the TX port of the PHY interface emulation, varying polled-status information is provided back
to the TX interface on the link-layer SPI-3 port. As the emulator is only designed to be a simple
demonstration, no error checking is performed on the data received on its SPI-3 TX interface.

The following additional files must be copied into the simulation directory to use the test suite:

spi3_link_v4_1_spi3_link_rx.v/vhd
spi3_link_v4_1_spi3_link_tx.v/vhd
pl4_v8_1_pl4_snk_top.v/vhd
pl4_v8_1_pl4_src_top.v/vhd

Figure 6: Testbench Structure

spi4_to_4spi3_tb.v/vhd

bridge_top.v/vhd

master_clocks.v/vhd

spi3_emulator_phy.v/vhd
X737_06_010607

http://www.xilinx.com

Testbench and Simulation

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 12

R

These files are the gate-level simulation models for the SPI-3 and SPI-4.2 cores used in the
bridge design. These models are generated in CORE Generator together with the netlist files,
separate from the reference design. These simulation models use alternative names for SPI-3
and SPI-4: POS-PHY Level 3 (PL3) and POS-PHY Level 4 (PL4), respectively.

After the files are copied to the simulation directory, the logic simulator ModelSim should start
from test/<verilog|vhdl>. From the ModelSim main window, simulation is started by
executing simulate.do. This DO file compiles the appropriate source files, runs the
simulation, and displays the waveforms at the end of the simulation run. Data is visible at all four
SPI-3 interfaces and the looped back SPI-4 interface, as seen in the waveform when running
the sample ModelSim scripts provided with the demonstration test suite. Only the external
interfaces are shown to reduce the complexity of the displayed waveforms.

http://www.xilinx.com

Testbench and Simulation

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 13

R

Figure 7: Demonstration Test Suite

spi4_to_4spi3_tb

Bank of 4 SPI-3 Cores
bridge_top

Bridge Reference Design

SPI-4.2 Core

SPI-3 PHY
Emulator

spi3_emulator_phy

SPI-3 Core

Data

Control/Status

Data

Control/Status

SPI-3 PHY
Emulator

spi3_emulator_phy

SPI-3 Core

Data

Control/Status

Data

Control/Status

SPI-3 PHY
Emulator

spi3_emulator_phy

SPI-3 Core

Data

Control/Status

Data

Control/Status

SPI-3 PHY
Emulator

spi3_emulator_phy

SPI-3 Core

Data

Control/Status

Data

Control/Status

Clock
Generator

master_clock

SPI-3 to SPI-4.2
Bridge

Source

Data

Control/
Status

Data

Control/
Status

Data

Control/
Status

SPI-4.2 to SPI-3
Bridge

Sink

Data

Control/
Status

Data

Control/
Status

Data

Control/
Status

X737_07_032807

http://www.xilinx.com

Modifying the Reference Design

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 14

R

Modifying the
Reference
Design

Minor modifications can be made to the Virtex-4 SPI-4.2 to SPI-3 bridge reference design. This
section describes how to make a few of these modifications. After the modifications are made,
the design might not meet timing using the constraints file provided.

Performance Requirements

This design is specified to work with the SPI-4.2 core at an operating frequency of 350 MHz
DDR (175 MHz internal frequency), and the SPI-3 core at an operating frequency of 104 MHz.
The constraints file can be modified to support additional data rates, up to the maximum
operating frequencies of the SPI-4.2 and SPI-3 cores.

During implementation, the following warning can result:

WARNING:Timing:3233 - Timing Constraint "TS_RDClk_P = PERIOD TIMEGRP
"RDClk_P" 351 MHz HIGH 50%;" fails the minimum period check for the input
clock spi4_to_spi3_top0/pl4_snk_top0/U0/clk0/RDClk_ibufgds to DCM
spi4_to_spi3_top0/pl4_snk_top0/U0/clk0/rdclk_dcm0 because the period
constraint value (2849 ps) is less than the minimum internal period limit
of 3332 ps. Please increase the period of the constraint to remove this
timing failure.

Currently, the ISE 8.2 tools use the more restrictive period check for the DFS outputs, which is
3332 ps or 300 MHz for a -10 speed grade device. If the input and output frequencies coincide
with the specification of stated in "DCM and PMCD Switching Characteristics" of [Ref 2], these
warnings can be ignored.

Clock Requirements

When targeting a Virtex-4 device, the SPI-4.2 core requires a 200 MHz reference clock. This
reference clock provides a time reference to the IDELAYCTRL modules to calibrate the individual
delay elements (IDELAY) in the clock region. This clock must be routed on a global clock buffer.

The SPI-4.2 user interface, bridge logic, and SPI-3 user interfaces are currently all clocked
synchronously from the SPI-4.2 output clock SysClkDiv_GP. This design can be modified to
clock these interfaces with a different clock. To clock the SPI-4.2 and SPI-3 user interfaces at
different clock frequencies, refer to “Changing to an Asynchronous FIFO.”

To simplify clocking within the design, the bridge design assumes that all four SPI-3 cores use
the same RFClk and TFClk clocks. However, the bridge design can be modified to support
independent clocks for the SPI-3 interfaces.

Device and Package Requirements

This reference design is targeted to a Virtex-4 XC4VLX40FF1148-10 device. However, the
provided constraints file can be modified to support additional Virtex-4 device/package
combinations. Any new device/package combination for this design must be supported by the
SPI-4.2 v8.1 core. To modify the UCF file provided with the reference design, lines in the UCF
file should be replaced with corresponding information from the UCF files generated together
with the SPI-4.2 v8.1 core in particular device/package combination.

Resource Requirements

The slice count for the design is 7917 slices (42% of the Virtex-4 LX40 slices) and the block
RAM count is 48 (50% of the Virtex-4 LX40 slices). The block RAM usage can be increased or
decreased by adjusting the size of the internal bridge FIFOs (see “Changing FIFO Depth” for
more details).

Note: The resource utilization above is calculated including the SPI-4.2 and SPI-3 cores.

http://www.xilinx.com

Modifying the Reference Design

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 15

R

SPI-4.2 Core: Static versus Dynamic Alignment

The SPI-4.2 core implemented with the bridge design is the dynamic alignment version. If
dynamic alignment is used with the bridge design, then no modification is required to the
provided code. However, if static alignment is desired, then the file
spi_clk_startup.v/vhd must be modified by commenting out the entire procedure
snk_fsm. This procedure uses the PhaseAlignRequest/PhaseAlignComplete signals to
ensure the dynamic alignment logic is successfully trained and is not required in the static
alignment implementation. Instead, the PhaseAlignRequest signal is driven to a constant 0.

Monitoring the Full Flag of Burst-Storage FIFO

As mentioned in “Read Module,” potential data overflow is possible when the device supplying
data to the SPI-4.2 core in the user's system is slow to respond to a request to halt data
transfer. The user can monitor the almost-full flag of the burst-storage FIFO to eliminate the
problem. After the almost-full flag of the burst-storage FIFO is High, the user should not read
any more data from the SPI-4.2 sink core.

Changing FIFO Depth

To change the size of the burst-storage FIFO:

1. Open the Xilinx CORE Generator tool.

2. Click Create a New Project.

3. Set options as below:

a. Choose Virtex-4 device and related packages.

b. Under Design Entry, choose VHDL or Verilog.

c. Set Vendor as ISE, and click OK.

4. Select the menu item File → Recustomize core.

5. Browse to hdl/generic_sfifo_512x72.xco, and click Open.

6. The FIFO depth can now be changed to a different size. A larger FIFO requires more block
RAM and affects timing.

Changing to an Asynchronous FIFO

Using different clocks for clocking the user side of the SPI-4.2 cores and the user side of the
SPI-3 cores causes the bridge logic to cross clock domains. To make this change, the
generic_sfifo_512x72.xco must be changed to an asynchronous FIFO, generated using
the CORE Generator system.

In addition, the module hdl/<verilog|vhdl>/spi3_to_spi4_burst_storage.v/vhd,
the module hdl/<verilog|vhdl>/spi4_to_spi3_burst_storage.v/vhd, and the
wrapper files must be modified as follows:

1. Add both user-side clocks to the modules. This extra port must be reflected in all levels of
wrapper files.

2. Change the generic_sfifo_512x72 instantiations in each module must to reflect the
new asynchronous FIFO module.

3. Drive the empty, almost-empty, half-full, etc. signals appropriately by signals from the newly
instantiated FIFO.

4. Minimize glitching and metastability on the packet count signals (PktCntEq0 and
PktCntEq1) generated in the process create_pkt_cnt in the file:

hdl/<verilog|vhdl>/spi3_to_spi4_burst_storage.v/vhd

This process compares signals crossing clock domains.

5. Change all levels of wrapper files so each module is clocked by the appropriate clock.

http://www.xilinx.com

Reference Design Specification

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 16

R

Changing Channel Mapping

Currently, the SPI-4.2 channel 0 is mapped to SPI-3 core instantiation 0, channel 1 is mapped
to instantiation 1, and so on. This can be changed easily with two modifications:

• In the SPI-4.2 to SPI-3 direction, the channel mapping is determined by the file:

hdl/spi4_to_spi3_burst_storage.v/vhd

in the sequential block write_enable_proc. To change the mapping, modify the address
contained in the if statement within this sequential block.

• In the SPI-3 to SPI-4.2 direction, the mapping is determined by the file:

hdl/<verilog|vhdl>/spi3_to_spi4_core.v/vhd

in the spi3_to_spi4_burst_storage instantiations. To change the mapping, change all port
mappings of the SPI3_<port number> and Brst_<port number> to reflect the desired mapping.

Changing Arbitration Schemes

Currently, in the SPI-3 to SPI-4.2 direction, the arbitration to determine the SPI-3 core data to
be transferred is determined in a round-robin fashion. If a different arbitration scheme is
desired, modify the schaddr process in the file:

hdl/<verilog|/vhdl>/spi3_to_spi4_arbiter.v/vhd.

Reference
Design
Specification

The reference design for implementing the SPI-4.2 to quad SPI-3-bridge reference design
targeted to Virtex-4 devices is available at:

http://www.xilinx.com/bvdocs/appnotes/xapp737.zip

Table 9 provides device, performance, and resource utilization information on the SPI-4.2-to-
quad-SPI-3 bridge reference design.

Conclusion The SPI-4.2 to quad SPI-3-bridge reference design implements an effective way to move
packets from one data rate to another and constructs a bridge between two standard devices
supporting different interfaces standards.

References 1. UG153, SPI-4.2 v8.3 User Guide. Download requires registration.

2. DS302, Virtex-4 Data Sheet: DC and Switching Characteristics.

3. UG154, LogiCORE SPI-4.2 v8.3 Getting Started Guide.

4. DS504, SPI-3 Link Layer Data Sheet.

Table 9: Reference Design Specifications (Virtex-4 Device)

Parameter Value

Device supported XC4VLX40FF1148-10

Performance

SPI-4.2 interface 350 MHz (max)

SPI-3 interface 104 MHz (max)

Bridge design 175 MHz (max)

Resource utilization
(includes SPI-4.2 and SPI-3 cores)

7917 Virtex-4 slices
48 RAMB16s

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp737.zip
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/spi3_link_ds504.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/spi4_2_gs_ug154.pdf
http://www.xilinx.com/bvdocs/publications/ds302.pdf
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=DO-DI-POSL4MC

Revision History

XAPP737 (v1.0) June 12, 2007 www.xilinx.com 17

R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

06/12/07 1.0 Initial Xilinx release.

http://www.xilinx.com

	SPI-4.2 to Quad SPI-3 Bridge in Virtex-4 FPGAs
	Summary
	Software and IP Requirements

	Introduction
	Design Overview
	SPI-4.2 Core to Quad SPI-3 Cores
	Read Module
	Burst-Storage Module
	Write Module
	Flow Control Module

	Four SPI-3 Cores to One SPI-4.2 Core
	Read Module
	Burst-Storage Module
	Arbiter Module
	Write Module
	Initialization Sequencing
	Source
	Sink
	Module spi_clk_startup

	Configuration Parameters
	Synthesis and Implementation
	Steps to Synthesize and Implement the Bridge Design.

	Testbench and Simulation
	Modifying the Reference Design
	Performance Requirements
	Clock Requirements
	Device and Package Requirements
	Resource Requirements
	SPI-4.2 Core: Static versus Dynamic Alignment
	Monitoring the Full Flag of Burst-Storage FIFO
	Changing FIFO Depth
	Changing to an Asynchronous FIFO
	Changing Channel Mapping
	Changing Arbitration Schemes

	Reference Design Specification
	Conclusion
	References
	Revision History

