

 Mipsology © 2022, all rights reserved 1

Zebra®

VMAccel™ FPGA Cloud

AMD/Xilinx® Versal VCK5000

Getting Started
Guide

Zebra Version: V2022.versal.alpha

 Mipsology © 2022, all rights reserved 2

Table of Contents

1 Introduction & Scope .. 3

2 License ... 3

3 Contact & Support ... 3

4 Requirements .. 3

5 VMAccel Cloud Access .. 3

6 Launching Zebra VM Instances ... 4

7 Starting Zebra on VM Instance ... 5

8 Mipsology Examples ... 6

8.1 Quick start ... 6

8.2 Details ... 6

9 Mipsology Demos.. 8

9.1 Quick Start ... 8

9.2 Details ... 8

9.3 Input for Docker Demos .. 10

10 Performance ... 10

11 Accuracy .. 12

12 Release Limitations ... 13

12.1 Layers .. 13

12.2 All Frameworks ... 13

12.3 PyTorch .. 14

12.4 TensorFlow 1 & 2 .. 14

13 Other Details ... 14

13.1 Zebra Legacy Mode ... 14

13.2 Graph Splitting .. 15

14 FAQ .. 16

 Mipsology © 2022, all rights reserved 3

1 Introduction & Scope
This document is a getting started guide for running Mipsology® Zebra CNN inference acceleration

software on AMD/Xilinx® VCK5000 PCIe Acceleration Card hosted at VMAccel® FPGA Cloud.

This is an Alpha release with following goals:

• Demonstrates Zebra functionality on VCK5000 board.

• Demonstrates Zebra software Ease-of-Use.

o Accelerate post-training Convolution Neural Network (CNN) model without any structural

modification. NO pruning or re-training of the model.

o Automatic and in-line quantization/calibration. No offline or separate compilation tool.

• Performance for many CNNs is high; but not best possible. Details in later section.

• Accuracy for most models is high; but not best possible. Details in later section.

2 License
VMAccel Zebra virtual machines (VM) are pre-configured with software license. This license is not

designed for production deployment. Any CNN inference running continuously for more than 15minutes

will experience significant slowdown in execution.

3 Contact & Support
Please email support@mipsology.com for questions, concerns, technical help or discuss your project’s

unique requirements.

Please email licenses@mipsology.com for questions related to Zebra License.

4 Requirements
VMAccel Zebra instances are pre-configured with all required software and hardware. Only requirement

on client side is a computer with internet connection and web browser.

5 VMAccel Cloud Access
To gain access to VMAccel cloud, please fill the form https://www.vmaccel.com/zebrademo

For any questions or concerns, please contact support@vmaccel.com

mailto:support@mipsology.com
mailto:licenses@mipsology.com
https://www.vmaccel.com/zebrademo
mailto:support@vmaccel.com

 Mipsology © 2022, all rights reserved 4

6 Launching Zebra VM Instances
Once you have the access credentials from VMAccel, please follow “Getting Started” section from

https://vmaccel.atlassian.net/wiki/spaces/docs/pages/59212022/Getting+Started

Summary:

• In a web browser navigate to: https://xilinx2.vmaccel.com/dashboard/project/

• On left hand side: Click on “Instances”

• On right hand side: Click on “Launch Instance”

• Follow GUI instructions/options for configuration

IMP: Use following details when creating Zebra VM instance:

• Source : Secure Boot Image = “Mipsology Zebra VCK5000 ES1”

• Flavor = “Mipsology Zebra VCK5000-ES1.1 (16.32.128)”

• Network = “mipsology_local”

For advanced features like enabling external ssh access, follow instructions here :

https://vmaccel.atlassian.net/wiki/spaces/docs/pages/38830174/Connect+to+Instance+via+SSH

Once created, you should see the instance listed as a row on “Instances” web page/view. Example

screenshot:

https://vmaccel.atlassian.net/wiki/spaces/docs/pages/59212022/Getting+Started
https://xilinx2.vmaccel.com/dashboard/project/
https://vmaccel.atlassian.net/wiki/spaces/docs/pages/38830174/Connect+to+Instance+via+SSH

 Mipsology © 2022, all rights reserved 5

7 Starting Zebra on VM Instance

After the VM instance is created successfully:

1. Start the instance by clicking on the

“Instance Name”

2. Click on “Console”

3. Connect to “noVNC”

Inside VNC session:

Right-click on desktop

Click on “Open Terminal Here”

cd

cd zebra/V2022.versal.alpha/examples

./docker/run.bash

(start Zebra Docker)

cd zebra

. settings.sh

cd examples

zebra_tools --checkCores

Zebra is ready IF above command shows status
without any errors.

At this point, User is inside Zebra docker

running on user-configured Zebra VM instance

targeting VCK5000 board.

 Mipsology © 2022, all rights reserved 6

8 Mipsology Examples
Zebra provides example scripts and software to execute inference on various CNN post-trained models.

All the models are open-source – i.e. downloaded from internet (graph and weights/parameters).

8.1 Quick start
Inside Zebra docker

cd

cd zebra

. settings.sh

cd examples

./run_classification.sh -n resnet50 -f tensorflow

(Run TensorFlow1 ResNet-50v1 Inference on VCK5000)

➢ NOTE: when a network is executed for 1st time, Zebra will automatically perform

Quantization/Calibration for INT8 inference. Result of calibration is saved and reused in future.

./run_classification.sh -n resnet50 -f pytorch

(Run PyTorch ResNet-50v1.5 inference on VCK5000. NOTE: when executed 1st time, the model gets
automatically downloaded from Internet. Downloaded models are saved and reused in future.)

./run_classification.sh -n resnet50 -f tensorflow2

(Run TensorFlow2 ResNet-50 Inference on VCK5000. NOTE: when executed 1st time, the model gets
automatically downloaded from Internet. Downloaded models are saved and reused in future.)

Results of inferences can be found in predict.log file.

8.2 Details
Zebra provided example application software is intended to demonstrate CNN inference with the input

being the post-training model. All the models are either pre-downloaded from open-source links or, in

most cases, get automatically downloaded when executing the script.

Intent of Examples is to demonstrate seamless flow for FPGA acceleration of the CNN model.
Intent of Examples is NOT to demonstrate full application execution.

User interface is “run_classification.sh” script located inside examples directory. The

associated python software is developed by Mipsology. This can be seen as an application that computes

inference for chosen post-trained network (a.k.a. model) inside user’s framework.

Table below shows list of networks supported across frameworks in current release. Please use network

and framework names in this table to run inference on associated model. For e.g.:

PyTorch ResNet-18 : ./run_classification.sh -f pytorch -n resnet18
TensorFlow2 ResNet101 : ./run_classification.sh -f tensorflow2 -n resnet101
TensorFlow1 Inceptionv4 : ./run_classification.sh -f tensorflow -n inceptionv4

 Mipsology © 2022, all rights reserved 7

pytorch tensorflow tensorflow2

Model Source:
https://pytorch.org/vision/0.9/

models.html

Model Source:
Open-source models gathered

from internet.

Model Source:
https://tfhub.dev/

https://storage.googleapis.com/

resnet50 inceptionv4 resnet50

resnet18 inceptionv3 resnet50v2

resnet34 vgg16 resnet101

resnet101 vgg19 resnet101v2

resnet152 resnet50 resnet152

densenet121 resnet152 resnet152v2

densenet161 mobilenet_v1 inceptionv1

densenet169 mobilenet_v2 inceptionv2

densenet201 yolov1 inceptionv3

inceptionv3 yolov2 inception_resnet_v2

mobilenet_v2 yolov3 mobilenet_v1

wide_resnet50_2* mobilenet_v2

wide_resnet101_2* vgg16

squeezenet vgg19

squeezenet1_1

vgg11

vgg11_bn

vgg13

vgg13_bn

vgg16

vgg16_bn

vgg19 * some reports of VCK5000 card instability. Under investigation. May
be due to card thermal/power. vgg19_bn

run_classification.sh has many options that you can discover by adding the option “--help".

Note that some options will force the mapping, optimization and/or quantization of the network to be

redone as they impact the way the computation of the network is done on Zebra; then requiring more

time than a simple inference execution.

Note that in the log file, all lines not preceded by “[ZEBRA]” are from libraries (like Python). “[ZEBRA]” is

the header for lines printed by Zebra or by the application.

Expectation for Future Release
In upcoming releases, Zebra is expected to support and demonstrate increasing number of CNN models
(and associated layers) across all three popular ML Frameworks.

https://pytorch.org/vision/0.9/models.html
https://pytorch.org/vision/0.9/models.html
https://tfhub.dev/
https://storage.googleapis.com/

 Mipsology © 2022, all rights reserved 8

9 Mipsology Demos
Zebra software ships with many demos inside the provided Docker image. All docker demos, including

application software and post-trained CNN models, are sourced from open-source GitHub repositories.

9.1 Quick Start
Inside Zebra docker

cd

source zebra/settings.sh

cd tensorflow-yolov4-tflite

(taking YOLO-v4 as an example)

zebra_config --system --add runSession.enableTimeStatistics=true

(enable printing performance table/statistics at end of Zebra run. By adding “system” flag, this option

is enabled globally for all subsequent Zebra runs.)

./run ~/zebra/examples/VIDEO/paris_cut1.mkv

(run TF1 YOLO-v4 inference on VCK5000)

NOTES:

• By default, the application will show output video/pictures in a new GUI window.

• By default, inference is executed using batch=1.

o Which means only 1 Zebra core is being utilized.

o For VCK5000 this means performance is 1/8th of full Zebra performance.

• All this information is available in the summary table printed (in terminal window) by Zebra at

end of inference execution.

• This demo supports other pretrained CNN models – YOLO-v3, TinyYOLO-v4 and TinyYOLO-v3.

• Please study the ‘run’ script and detect.py application for more options.

9.2 Details
Zebra executes inside an ML framework. Zebra executes “in-line” with user application, including

Quantization and Calibration. When accelerating CNN inference with Zebra, there is no additional tool for

offline processing. Mipsology does not provide a model-zoo because Zebra software is designed to

accelerate neural networks trained on GPU without modification.

Intent of Demos is to demonstrate effortless FPGA acceleration of applications.

Intent of Demos is not to demonstrate a fully optimized and ready-to-deploy application.

Zebra aims to run inference with no change to application software and the model/graph. However, many

GitHub repositories are not designed for easy execution on CPU or any accelerator (including GPU). Hence,

Zebra makes following modifications for smooth User Experience (UX):

a) For repositories that ‘only’ give post-trained weights; Zebra generates a frozen graph before

running the demo when required.

 Mipsology © 2022, all rights reserved 9

b) Provide ability to use videos OR image OR directory_of_images as input.

c) Provide a ‘run’ script.

This is a wrapper script that enables all demos to run with similar command line. E.g.:

./run <input_source> [--batch B] [--out_file <file>] [--inputSize WxH]

• input_source = video file / image file / directory with images / usb cameras

• B = size of batch to use. Default = 1

• out_file = video file to save the output. Default = display output in new window.

• WxH = input image size to Neural Network for inference.

• Unless the post-trained model has strict restrictions, the input image size can be user defined.

User is encouraged to study the ‘run’ script and related application *.py code to understand various

options.

Table below shows the various demos and associated CNN model along with how to enable Zebra.

Demo Name Framework Supported CNN Models Command to enable Zebra

darkflow TF1 YOLO-v2, TinyYOLO-v2 source settings.sh

tensorflow-yolo3 TF1 YOLO-v3 source settings.sh

tensorflow-yolov4-
tflite

TF1
YOLO-v4, TinyYOLO-v4,
YOLO-v3, TinyYOLO-v3

source settings.sh

yolov5 PT

YOLO-v5 N/S/M/L/N6/S6/M6

NOTE:
This demo supports 7 different
models. Models X, L6 and X6 are not
supported in this release.

source settings.sh

Ildoonet-tf-pose-
estimation

TF1 Pose-Estimation source settings.sh legacy

EDSR PT Super Resolution source settings.sh

VDSR TF1 Super Resolution source settings.sh

Table below gives list of GitHub source link:

Demo Name GitHub Source Link

darkflow https://github.com/thtrieu/darkflow

tensorflow-yolo3 https://github.com/aloyschen/tensorflow-yolo3

tensorflow-yolov4-tflite https://github.com/hunglc007/tensorflow-yolov4-tflite

yolov5 https://github.com/ultralytics/yolov5

Ildoonet-tf-pose-estimation https://github.com/jiajunhua/ildoonet-tf-pose-estimation

EDSR https://github.com/thstkdgus35/EDSR-PyTorch

VDSR https://github.com/DevKiHyun/VDSR-Tensorflow

https://github.com/thtrieu/darkflow
https://github.com/aloyschen/tensorflow-yolo3
https://github.com/hunglc007/tensorflow-yolov4-tflite
https://github.com/ultralytics/yolov5
https://github.com/jiajunhua/ildoonet-tf-pose-estimation
https://github.com/thstkdgus35/EDSR-PyTorch
https://github.com/DevKiHyun/VDSR-Tensorflow

 Mipsology © 2022, all rights reserved 10

9.3 Input for Docker Demos
Docker demos can accept input in either of the following formats:

• Video file

• Image file

• Directory of Images

Users are encouraged to use the input of their choice. Off course some demos may need appropriate input

– for example Pose-Estimation demo needs input where it can detect human pose. Unless specified by

the demo, the input can be of variable dimensions.

To make it easier for Users to run the demo on VMAccel Cloud instances, Mipsology provides sample

inputs videos. These video files are located inside ~/zebra/examples/VIDEO directory (let’s call it

<VID_DIR> in table below) which is automatically mounted when starting the docker container.

Table below gives example of command to start the demos.

Demo Name Basic Command Optional Switches

darkflow ./run <VID_DIR>/paris_cut1.mkv --batch 8 --out_file YLv2_dk_out.mp4

tensorflow-yolo3 ./run <VID_DIR>/paris_cut2.mkv --batch 8 --out_file YLv3_tf_out.mp4

tensorflow-yolov4-
tflite

./run <VID_DIR>/paris_cut3.mkv --batch 8 --out_file YLv4_tf_out.mp4

yolov5 ./run <VID_DIR>/paris_cut2.mkv --batch 8 --out_file YLv5s_tf_out.mp4

Ildoonet-tf-pose-
estimation

./run

<VID_DIR>/kulam_dance_27sec.mp4
--batch 8 --out_file pose_tf_out.mp4

NOTE: the output videos will be lost when docker is closed and when saved inside docker the video cannot

be viewed. User can choose to save the video outside docker by mounting a directory when starting the

docker container. For e.g.: ./docker/run.bash -v <dir_of choice>:/VIDS

Expectation for Future Release
In upcoming releases, Zebra is expected to enable more demos from open-source repositories covering

wide variety of CNN models and end applications.

10 Performance
In this Alpha release, current Zebra performance is medium-to-high depending on CNN. In near future
we expect rolling releases/updates with significant performance improvements to all supported CNNs.
For example, when targeting ResNet50 with a dedicated configuration, Zebra today can achieve 1.5x-3x
better FPS (depending on framework and model). And we expect to boost this number further. Similar
increase in performance is expected for all supported CNNs.

 Mipsology © 2022, all rights reserved 11

When analyzing performance from the summary table printed by Zebra, there are couple important points
to remember:

• The main line of interest is the “FPGA” line – this is the CNN inference on FPGA

• Non-FPGA portion (i.e. Software running on CPU) is expected to be pipelined in future releases
o Which will reduce the gap between ‘FPGA’ and ‘Whole Graph’ reported FPS

Each customer’s requirement will be unique. For questions or concerns, please reach out to Mipsology.

The two figures below show examples of performance summary table printed by Zebra on terminal at the

end of the inference execution when statistics are enabled. Taking TF1 ResNet-50 as an example:

 Mipsology © 2022, all rights reserved 12

Total time = 1 + 2a + 2b + 3 { 52.69 ms/batch (mean) == 7.17+9.40+30.95+5.18 }

• 2a == ALL / Majority CNN layers accelerated on FPGA

• 1, 2b, 3 == processes executing on CPU

• Future Zebra release(s) will pipeline/parallelize 1, 2b and 3

The whole-Graph performance (e.g.: 1.36k) will be very close to FPGA (e.g. 5.11k) assuming application
can provide a large enough batch size.

11 Accuracy
In this Alpha release, current Zebra delivers good accuracy. However, some CNNs may show larger than
expected accuracy drop. It is recommended to compare Zebra accuracy with an inference execution done
on CPU/GPU using the same trained mode, dataset, image pre-processing, etc. Zebra makes switching
between FPGA and CPU/GPU execution very easy : 1-line Linux command to enable and disable Zebra.

 Mipsology © 2022, all rights reserved 13

In case the inference accuracy is observed to be lower than expected in a default run, Zebra provides SW
switches to improve the accuracy (the same FPGA bitstream is used).

Examples of Zebra SW switches/APIs to improve accuracy:

• quantization.mode=dynamic (default = constrainedCalibrationV1.5)

• quantization.forceSatCheckOnLastLayer=false (default = true)

• quantization.algorithmVersion=1.0 (default = 3.1)
• quantization.ignoreNegativeValuesOnLastLayer=false (default = true)

• runOptimization.addOptimizers=PrecisionRecovery:RUN

Example : zebra_config --add quantization.mode=dynamic

In our experience, accuracy is a topic that usually attracts intellectual discussions. Please check this FAQ

question for more information on understanding accuracy and Zebra Quantization/Calibration.

Note that achieving desired accuracy for CNN Inference is a 1-time R&D effort. Once achieved, Zebra

saves the results of quantization/calibration process in a file and always re-use for future execution. The

quantization results file can be deployed on target inference servers.

Quantization/Calibration is executed again in event of a change in inputs that can influence the quality of

results – for e.g. change in model weights.

Please email Mipsology for any questions or concerns or unique requirements for Your CNN.

12 Release Limitations

12.1 Layers
In this alpha release:

• Zebra does not support the “element-wise mul” layer. Trying to execute a model with this

layer (e.g. efficientdet, efficientnet, mobilenet_v3) may freeze the FPGA which will

require cold reboot.

• Zebra expects the CNN graph/model should include only layers supported by ONNX. Expect

Zebra to fail when the model includes layers not supported by ONNX.

o For e.g. FB Detectron2 does not work because the graph includes custom layers.

o Zebra may be able to support these graphs ‘easily’ on case-by-case basis. Please reach

out to Mipsology for this type of requirement.

12.2 All Frameworks
In this alpha release

• Some open-source models may experience an error during conversion to ONNX.

 Mipsology © 2022, all rights reserved 14

o In such cases, the error message will mention which opset_version to use.

o Please use Zebra’s SW API to force this setting and re-run the application. For e.g.:

zebra_config --add debug.opset_version=<num_in_error_message>

<run_your_application_again>

12.3 PyTorch
• This alpha release does not support the explicit “forward” inference API. For example:

o The following code will FAIL with Zebra error
output = model.forward(input)

o The following code will PASS
output = model(input)

12.4 TensorFlow 1 & 2
• Some demos may experience Zebra error related to automatic graph splitting.

o We are still working on covering all ways in which TF developers train models and

generate graphs.

• The solution is to use Zebra Software API to ‘manually’ split the graph (a.k.a. ‘Legacy’ mode)

• Details about graph splitting provided in a dedicated section of this document.

Expectations for Future Release

In upcoming releases, Zebra is expected to improve automatic graph splitting for all frameworks and

support models/graphs with custom layers (i.e. layers not supported by ONNX).

13 Other Details

13.1 Zebra Legacy Mode
Some demos in this release uses ‘manual’ graph splitting achieved with the Zebra SW API. For this to work,

user needs to enable Zebra in ‘Legacy’ mode. Below is one example.

Inside Mipsology Docker container:

cd

source zebra/unset.sh

source zebra/settings.sh legacy

(Enables ‘legacy’ mode. This is different than default instructions)

cd ildoonet-tf-post-estimation

zebra_config --add runSession.enableTimeStatistics

./run /VIDEO/kulam_dance_27sec.mp4

 Mipsology © 2022, all rights reserved 15

13.2 Graph Splitting
In this alpha release

• PyTorch based models/graph are automatically managed by Zebra

o Decision to run some layers on CPU vs. accelerating on FPGA as well as the associated

data managemnet is transparent to user.

• TensorFlow based models/graphs

o Some applications work automatically out-of-box. For e.g. YOLO-v4 docker demo.

o For some models/graphs, Zebra needs user’s help. For e.g. Pose-Estimation docker demo.

This is the first release with Automatic graph splitting. In some cases (depending on the CNN), the splitting

creates many sub-graphs which may not be optimal. In future release(s), Zebra is expected to improve the

splitting feature for all supported CNNs.

When performing ‘manual’ graph splitting, Zebra needs to be enabled in Legacy mode.

Manual graph splitting is an advanced concept that assumes user is well aware of CNNs and their analysis

using framework tools. To use this explicit API, user needs to identify appropriate layers for FPGA (or CPU)

execution and instruct Zebra using software API/command. Zebra will then split the graph as per user

directive. Note that the execution and data management is performed automatically by Zebra without

user intervention.

Example of the SW API/command:

zebra_config --add runSession.subGraphs=<MODE>:<startLayer>:<endLayer>

where:

• <MODE> == FPGA or CPU

• <startLayer> == Name of 1st layer in the model to be executed on MODE

• <endLayer> == Name of last layer in the model to be executed on MODE

If there are multiple subgraphs to be declared, all the subgraphs must be declared in the same command.

The description of subgraphs must be separated by a "|" (pipe). For example, declaring two subgraphs

would look like:

subGraphs=<MODE1>:<startLayer1a,startLayer1b>:<endLayer1a,endLayer1b>|<MODE2>

:<startLayer2>:<endLayer2>

Identification of layer names can be done using Framework APIs or using graphical tools like Netron.

Please email Mipsology for any questions around ‘manual’ graph splitting and use of Legacy mode.

 Mipsology © 2022, all rights reserved 16

14 FAQ

Can I control FPGA operating frequency?
On this alpha release for VCK5000, user cannot control FPGA operating frequency. We expect to enable

this feature in next release.

Why do I get CUDA related messages when running some demos?
Depending on the demo, some CUDA related messages may be printed on terminal by the ML Framework.

This should not result in any error during execution. This is not related to Zebra. If absolutely needed,

these messages can be suppressed by compiling the framework from source.

Does Mipsology provide a Model-Zoo?
Mipsology does not provide a model-zoo. This is because Zebra software is designed to accelerate neural

networks (CNNs) trained on GPU without modification. In other words, Zebra accelerates post-training

CNN graph as-is without any

structural change. User does not

need to prune the model. There are

no offline tools to use before

running Zebra.

Zebra works inside User’s ML

Framework and in-line with User’s

Application. Figure here shows

simplified Zebra software stack.

Please reach out to Mipsology for

further questions or to discuss

project’s unique requirements.

 Mipsology © 2022, all rights reserved 17

Can You give more information about Accuracy and Zebra Quantization?
High Accuracy for CNN Inference is important for production deployment. Inference accuracy depends on

many factors like model training, dataset used, image pre-processing, etc. Based on our experience, it is

not a correct practice to compare Zebra result with theoretical accuracy found in an article or on internet.

Best practice is to compare results of 2 executions – one with CPU/GPU and one with Zebra on FPGA –

using exact same weights/parameters, input data, pre-processing and application software.

Zebra does not need any offline tool for quantization. The process of FP32 to INT8 conversion happens in-

line with user’s application. From User’s point of view, they run the inference application just as they

would normally run on CPU/GPU.

Zebra makes switching between FPGA and CPU/GPU very easy – 1-line Linux command : source
settings.sh”.

Zebra aims to provide optimal accuracy by default. In case the accuracy is still observed to be lower than

expected, Zebra provides SW switches to improve the accuracy (NOTE: the same FPGA bitstream is used).

Some examples of this are shown in Accuracy section.

Most of the software options are influencing the calibration and quantization algorithms, and don’t impact

performance. The reason different algorithms may be required is that Zebra does not use the training

data or expected results to map a model, which sometimes can influence the quality of the results.

Typically, the options found for a given model will be reusable if the model goes through various training.

It is also a good practice that the first batch of images, which is used by Zebra for quantization/calibration,
are diversified and of good quality. For example:

• Images should cover a good spread of target classes (classification) and objects (detection)

• Not all images should be very dark or very bright

• Not all images expected to give wrong result

• Not all images should be known outliers

• Not all images with extreme size (e.g. largely enlarged)

Users well versed with CNN model and intent of the application typically understand these requirements.

Note that achieving desired accuracy for CNN Inference is a 1-time R&D effort. Once achieved, Zebra

saves the results of quantization/calibration process in a file and always re-use for future execution. The

quantization results file can be deployed on target inference servers.

Quantization/Calibration is executed again in event of a change in inputs that can influence the quality of
results – for e.g. change in model weights.

Please email Mipsology for any questions or concerns or unique requirements for Your CNN.

How do I contact Mipsology for support or questions?
Please email support@mipsology.com with any questions or concerns or to discuss your unique

requirements.

mailto:support@mipsology.com

 Mipsology © 2022, all rights reserved 18

Legal Notice

The information disclosed to you (the “User”) hereunder is provided solely for the selection and use of Mipsology

products. The information, the applications, and the tools (together referred as the “Materials”) are made available

“AS IS” and with all mistakes, errors, inconsistencies, or defects, without warranty of any kind. To the maximum

extent permitted by applicable law:

(1) The Materials are provided "as is" and "as available", without warranty of any kind. Mipsology, its affiliates, its

officers, its employees, or its suppliers and representatives, do not warrant in any way that the Materials is error

free or satisfy licensee's specific requirements and disclaim any and all warranties of any kind or nature, whether

express, implied, or statutory, relating to or arising with respect to the Materials, including but not limited to implied

warranties of merchantability, warranty of fitness for a particular purpose, title, and noninfringement. Mipsology

makes no warranty concerning the data, results or information resulting in using the Materials.

(2) To the maximum extent permitted by applicable law, in no event shall Mipsology, its affiliates, its officers, its

employees, or its suppliers and representatives be liable for any special, exemplary, consequential, incidental,

punitive, direct or indirect damages whatsoever including, but not limited, to loss of business profit, loss of use, loss

of data, business interruption, loss of revenue, loss of orders, loss of business or profits, anticipated savings, loss of

information and data, damage to brand image, or any other financial loss arising out of or in connection with the use

of the Materials or the operation of the application or any other product or services, even if advised beforehand of

the possibility of such damages. In no event will Mipsology total liability under or arising out of this agreement

exceed the actual received payment from User, directly or through the cloud, in the last billing period or the duration

of the incident, whichever is the lowest amount, reduced by any other amount Mipsology would have paid back to

User. To the extent that the applicable jurisdiction limits licensee's ability to disclaim any implied warranties, this

disclaimer shall be effective to the maximum extent permitted. Without limiting the foregoing, the User is

responsible for determining and verifying that the Materials, its environment, and the hardware used to run the

application are compatible. Mipsology further decline any warranties of any kind or nature on the hardware used in

conjunction with the Materials. Mipsology shall not be liable to User nor any third parties (whether arising in

contract, tort (including negligence), breach of statutory duty or otherwise) for failure of fitness or any of its or a

third party's systems that results in the inability to process or use the Material, User's failure to meet any of its

payment obligations, negligence, fraud or fraudulent misrepresentation of User or any other actions which result

from misuse or inappropriate use of the Materials.

Without prior written agreement, User will not knowingly, or allow others, including internally, to copy, reproduce,

modify, obliterate, distribute, or publicly display the Materials in any form, partially or fully, whatsoever except for

the normal usage of the Materials.

Mipsology assumes no obligation to correct any errors contained in the Materials or to notify User of updates to the

Materials. This document is subject to change without notice.

Please refer to Mipsology’s End User License Agreement (EULA.txt) and other legal notices available in the ‘doc’

directory of the provided release.

Copyright

© Copyright 2019–2022 Mipsology SAS. Mipsology and Zebra are registered trademarks of Mipsology SAS. All other

trademarks are the property of their respective owners.

